Sejnowski TJ, Destexhe A, Mainen ZF. (1998). Kinetic models of synaptic transmission Methods In Neuronal Modeling.

See more from authors: Sejnowski TJ · Destexhe A · Mainen ZF

References and models cited by this paper
References and models that cite this paper

Acker CD, Kopell N, White JA. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of computational neuroscience. 15 [PubMed]

Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]

Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA. (2011). A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of computational neuroscience. 31 [PubMed]

Bartolozzi C, Indiveri G. (2007). Synaptic dynamics in analog VLSI. Neural computation. 19 [PubMed]

Behabadi BF, Polsky A, Jadi M, Schiller J, Mel BW. (2012). Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites. PLoS computational biology. 8 [PubMed]

Brette R et al. (2008). High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron. 59 [PubMed]

Brunel N, Wang XJ. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of computational neuroscience. 11 [PubMed]

Carnevale NT, Hines M. (2003). Personal Communication of NEURON bibliography .

Carnevale NT, Morse TM. (1996). Research reports that have used NEURON Web published citations at the NEURON website.

Cavarretta F, Marasco A, Hines ML, Shepherd GM, Migliore M. (2016). Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb. Frontiers in computational neuroscience. 10 [PubMed]

Chen N, Li B, Murphy TH, Raymond LA. (2004). Site within N-Methyl-D-aspartate receptor pore modulates channel gating. Molecular pharmacology. 65 [PubMed]

Chen N, Ren J, Raymond LA, Murphy TH. (2001). Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-D-aspartate receptor nonsaturation during synaptic stimulation. Molecular pharmacology. 59 [PubMed]

Contreras D, Destexhe A, Steriade M. (1997). Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. Journal of neurophysiology. 78 [PubMed]

Davison A. (2004). Biologically-detailed network modelling (Chapter 10) Computation Neuroscience: A Comprehensive Approach.

Davison AP, Feng J, Brown D. (2003). Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. Journal of neurophysiology. 90 [PubMed]

Destexhe A. (2001). Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation Neurocomputing. 38-40

Destexhe A. (1997). Conductance-based integrate-and-fire models. Neural computation. 9 [PubMed]

Destexhe A. (1998). Spike-and-wave oscillations based on the properties of GABAB receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Destexhe A. (1999). Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? The European journal of neuroscience. 11 [PubMed]

Destexhe A. (2000). Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. Journal of physiology, Paris. 94 [PubMed]

Destexhe A, Contreras D, Steriade M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of neurophysiology. 79 [PubMed]

Destexhe A, Contreras D, Steriade M. (1999). Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience. 92 [PubMed]

Destexhe A, Contreras D, Steriade M. (2001). LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing. 38

Destexhe A, Pare D. (2000). A combined computational and intracellular study of correlated synaptic bombardment in neocortical pyramidal neurons in vivo Neurocomputing. 32

Destexhe A, Rudolph M. (2002). Point-conductance models of cortical neurons with high discharge variability Neurocomputing. 44-46

Destexhe A, Rudolph M. (2003). Location independence and fast conduction of synaptic inputs in neocortical neurons in vivo Neurocomputing. 52-54

Destexhe A, Rudolph M, Ho N. (2001). Synaptic background activity affects the dynamics of dendritic integration in model neocortical pyramidal neurons Neurocomputing. 38-40

Destexhe A, Sejnowski TJ. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological reviews. 83 [PubMed]

Feng J, Li G. (2002). Impact of geometrical structures on the output of neuronal models: a theoretical and numerical analysis. Neural computation. 14 [PubMed]

Ferguson KA et al. (2015). Network models provide insights into how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations. Frontiers in systems neuroscience. 9 [PubMed]

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK. (2013). Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Frontiers in computational neuroscience. 7 [PubMed]

Fernández de Sevilla D, Fuenzalida M, Porto Pazos AB, Buño W. (2007). Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons. Journal of neurophysiology. 97 [PubMed]

Fujita T, Fukai T, Kitano K. (2012). Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron. Journal of computational neuroscience. 32 [PubMed]

Gabbiani F, Cox SJ. (2010). Mathematics for Neuroscientists.

Graupner M, Brunel N. (2007). STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS computational biology. 3 [PubMed]

Halnes G, Augustinaite S, Heggelund P, Einevoll GT, Migliore M. (2011). A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus. PLoS computational biology. 7 [PubMed]

Hines ML, Carnevale NT. (2001). NEURON: a tool for neuroscientists. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 7 [PubMed]

Hoshino O. (2007). Enhanced sound perception by widespread-onset neuronal responses in auditory cortex. Neural computation. 19 [PubMed]

Hoshino O, Zheng M, Watanabe K. (2018). Perceptual judgments via sensory-motor interaction assisted by cortical GABA. Journal of computational neuroscience. 44 [PubMed]

Houweling AR et al. (2002). Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. The Journal of physiology. 542 [PubMed]

Hummos A, Franklin CC, Nair SS. (2014). Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus. 24 [PubMed]

Hummos A, Nair SS. (2017). An integrative model of the intrinsic hippocampal theta rhythm. PloS one. 12 [PubMed]

Hô N, Destexhe A. (2000). Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. Journal of neurophysiology. 84 [PubMed]

Hübel N, Hosseini-Zare MS, Žiburkus J, Ullah G. (2017). The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization. PLoS computational biology. 13 [PubMed]

Jeong HY, Gutkin B. (2007). Synchrony of neuronal oscillations controlled by GABAergic reversal potentials. Neural computation. 19 [PubMed]

Jones SR, Pinto DJ, Kaper TJ, Kopell N. (2000). Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. Journal of computational neuroscience. 9 [PubMed]

Karameh FN, Dahleh MA, Brown EN, Massaquoi SG. (2006). Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena. Biological cybernetics. 95 [PubMed]

Kilinc D, Demir A. (2015). Simulation of noise in neurons and neuronal circuits Proceedings of the IEEE/ACM international conference on computer-aided design (ICCAD).

Kilinc D, Demir A. (2017). Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques. IEEE transactions on biomedical circuits and systems. 11 [PubMed]

Kilinc D, Demir A. (2018). Spike timing precision of neuronal circuits. Journal of computational neuroscience. 44 [PubMed]

Kitano K, Fukai T. (2007). Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies. Journal of computational neuroscience. 23 [PubMed]

Kobayashi R et al. (2019). Reconstructing neuronal circuitry from parallel spike trains. Nature communications. 10 [PubMed]

Komendantov AO, Komendantova OG, Johnson SW, Canavier CC. (2004). A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Journal of neurophysiology. 91 [PubMed]

Kozloski J, Wagner J. (2011). An Ultrascalable Solution to Large-scale Neural Tissue Simulation. Frontiers in neuroinformatics. 5 [PubMed]

Linaro D, Storace M, Giugliano M. (2011). Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS computational biology. 7 [PubMed]

Liu Y, Milton J, Campbell SA. (2019). Outgrowing seizures in Childhood Absence Epilepsy: time delays and bistability. Journal of computational neuroscience. 46 [PubMed]

Matsui H, Zheng M, Hoshino O. (2014). Facilitation of neuronal responses by intrinsic default mode network activity. Neural computation. 26 [PubMed]

Mazza M, de Pinho M, Piqueira JR, Roque AC. (2004). A dynamical model of fast cortical reorganization. Journal of computational neuroscience. 16 [PubMed]

Mukunda CL, Narayanan R. (2017). Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. The Journal of physiology. 595 [PubMed]

Narayanan R, Chattarji S. (2010). Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. Journal of neurophysiology. 103 [PubMed]

Nicola W, Campbell SA. (2013). Bifurcations of large networks of two-dimensional integrate and fire neurons. Journal of computational neuroscience. 35 [PubMed]

Nowotny T, Rabinovich MI, Huerta R, Abarbanel HD. (2003). Decoding temporal information through slow lateral excitation in the olfactory system of insects. Journal of computational neuroscience. 15 [PubMed]

Paré D, Lang EJ, Destexhe A. (1998). Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study. Neuroscience. 84 [PubMed]

Pervouchine DD et al. (2006). Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural computation. 18 [PubMed]

Pinto DJ, Jones SR, Kaper TJ, Kopell N. (2003). Analysis of State-Dependent Transitions in Frequency and Long-Distance Coordination in a Model Oscillatory Cortical Circuit Journal of computational neuroscience. 15 [PubMed]

Poirazi P, Brannon T, Mel BW. (2003). Online Supplement: About the Model Neuron. 37 Online

Prescott SA, De Koninck Y. (2003). Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

Prescott SA, Sejnowski TJ, De Koninck Y. (2006). Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Molecular pain. 2 [PubMed]

Rubchinsky LL, Kopell N, Sigvardt KA. (2003). Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

Rudolph M, Destexhe A. (2001). Do neocortical pyramidal neurons display stochastic resonance? Journal of computational neuroscience. 11 [PubMed]

Rudolph M, Destexhe A. (2002). Novel dynamics of dendritic integration in the high conductance state of cortical neurons. Neurocomputing. 44-46

Rudolph M, Destexhe A. (2003). The discharge variability of neocortical neurons during high-conductance states. Neuroscience. 119 [PubMed]

Rudolph M, Destexhe A. (2003). Tuning neocortical pyramidal neurons between integrators and coincidence detectors. Journal of computational neuroscience. 14 [PubMed]

Rudolph M, Destexhe A. (2003). Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural computation. 15 [PubMed]

Rudolph M, Destexhe A. (2004). Inferring network activity from synaptic noise. Journal of physiology, Paris. 98 [PubMed]

Rudolph M, Destexhe A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural computation. 18 [PubMed]

Shapiro BE. (2001). Osmotic forces and gap junctions in spreading depression: a computational model. Journal of computational neuroscience. 10 [PubMed]

Stacey WC, Durand DM. (2000). Stochastic resonance improves signal detection in hippocampal CA1 neurons. Journal of neurophysiology. 83 [PubMed]

Stacey WC, Durand DM. (2001). Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. Journal of neurophysiology. 86 [PubMed]

Stacey WC, Durand DM. (2002). Noise and coupling affect signal detection and bursting in a simulated physiological neural network. Journal of neurophysiology. 88 [PubMed]

Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.

Thomson AM, Destexhe A. (1999). Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience. 92 [PubMed]

Tripp B, Eliasmith C. (2007). Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature neuroscience. 8 [PubMed]

Zhou YD, Acker CD, Netoff TI, Sen K, White JA. (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.