Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]

See more from authors: Marr D

References and models cited by this paper
References and models that cite this paper

Assisi C, Stopfer M, Bazhenov M. (2020). Optimality of sparse olfactory representations is not affected by network plasticity. PLoS computational biology. 16 [PubMed]

Berends M, Maex R, De Schutter E. (2005). The effect of NMDA receptors on gain modulation. Neural computation. 17 [PubMed]

Bol K, Marsat G, Harvey-Girard E, Longtin A, Maler L. (2011). Frequency-tuned cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Brader JM, Senn W, Fusi S. (2007). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural computation. 19 [PubMed]

Carrillo RR, Ros E, Tolu S, Nieus T, D'Angelo E. (2008). Event-driven simulation of cerebellar granule cells. Bio Systems. 94 [PubMed]

Casellato C et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar network. PloS one. 9 [PubMed]

Cathala L, Brickley S, Cull-Candy S, Farrant M. (2003). Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Cattani A, Solinas S, Canuto C. (2016). A Hybrid Model for the Computationally-Efficient Simulation of the Cerebellar Granular Layer. Frontiers in computational neuroscience. 10 [PubMed]

Cayco-Gajic NA, Clopath C, Silver RA. (2017). Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks. Nature communications. 8 [PubMed]

Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]

Clopath C, Badura A, De Zeeuw CI, Brunel N. (2014). A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Dangelo E, Nieus T, Bezzi M, Arleo A, Coenen O. (2005). (chapter) Modeling synaptic transmission and quantifying information transfer in the granular layer of the cerebellum Computational Intelligence and Bioinspired Systems, Proceedings. 3512

De Schutter E. (1997). A new functional role for cerebellar long-term depression. Progress in brain research. 114 [PubMed]

De Schutter E. (1998). Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. Journal of neurophysiology. 80 [PubMed]

De Schutter E. (1999). Using realistic models to study synaptic integration in cerebellar Purkinje cells. Reviews in the neurosciences. 10 [PubMed]

De Schutter E, Bower JM. (1994). Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proceedings of the National Academy of Sciences of the United States of America. 91 [PubMed]

DiGregorio DA, Nusser Z, Silver RA. (2002). Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron. 35 [PubMed]

Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]

Diwakar S, Parasuram H, Nair B, Medini C, Nair M. (2017). Computational Neuroscience of Timing, Plasticity and Function in Cerebellum Microcircuits (Chapter 12) Computational Neurology and Psychiatry, Springer Series in Bio-/Neuroinformatics.

Doi T, Kuroda S, Michikawa T, Kawato M. (2005). Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Forrest MD. (2015). Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC neuroscience. 16 [PubMed]

Gabbiani F, Midtgaard J, Knöpfel T. (1994). Synaptic integration in a model of cerebellar granule cells. Journal of neurophysiology. 72 [PubMed]

Garrido JA, Luque NR, D'Angelo E, Ros E. (2013). Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Frontiers in neural circuits. 7 [PubMed]

Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]

Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]

Genet S, Delord B. (2002). A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in purkinje cell dendrites. Journal of neurophysiology. 88 [PubMed]

Hariani HN et al. (2023). A system of feed-forward cerebellar circuits that extend and diversify sensory signaling. eLife. [PubMed]

Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]

Jaeger D, De Schutter E, Bower JM. (1997). The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Kistler WM, De Zeeuw CI. (2003). Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum (London, England). 2 [PubMed]

Luque NR, Garrido JA, Carrillo RR, D'Angelo E, Ros E. (2014). Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Frontiers in computational neuroscience. 8 [PubMed]

Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]

Maex R, De Schutter E. (1998). Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. Journal of neurophysiology. 80 [PubMed]

Manor Y, Rinzel J, Segev I, Yarom Y. (1997). Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. Journal of neurophysiology. 77 [PubMed]

Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Mittmann W, Koch U, Häusser M. (2005). Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. The Journal of physiology. 563 [PubMed]

Porrill J, Dean P. (2007). Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural computation. 19 [PubMed]

Rajagopalan A, Assisi C. (2020). Effect of circuit structure on odor representation in the insect olfactory system. eNeuro. 7 [PubMed]

Roberts PD. (2007). Stability of complex spike timing-dependent plasticity in cerebellar learning. Journal of computational neuroscience. 22 [PubMed]

Rössert C, Dean P, Porrill J. (2015). At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters. PLoS computational biology. 11 [PubMed]

Santamaria F, Jaeger D, De Schutter E, Bower JM. (2002). Modulatory effects of parallel fiber and molecular layer interneuron synaptic activity on purkinje cell responses to ascending segment input: a modeling study. Journal of computational neuroscience. 13 [PubMed]

Santamaria F, Tripp PG, Bower JM. (2007). Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. Journal of neurophysiology. 97 [PubMed]

Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

Steuber V et al. (2007). Cerebellar LTD and pattern recognition by Purkinje cells. Neuron. 54 [PubMed]

Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]

Vos BP, Maex R, Volny-Luraghi A, De Schutter E. (1999). Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Wetmore DZ, Mukamel EA, Schnitzer MJ. (2008). Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. Journal of neurophysiology. 100 [PubMed]

Wilson CJ, Beverlin B, Netoff T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in systems neuroscience. 5 [PubMed]

Yamazaki T, Nagao S. (2012). A computational mechanism for unified gain and timing control in the cerebellum. PloS one. 7 [PubMed]

Yamazaki T, Nagao S, Lennon W, Tanaka S. (2015). Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proceedings of the National Academy of Sciences of the United States of America. 112 [PubMed]

Yamazaki T, Tanaka S. (2005). Neural modeling of an internal clock. Neural computation. 17 [PubMed]

Yamazaki T, Tanaka S. (2007). A spiking network model for passage-of-time representation in the cerebellum. The European journal of neuroscience. 26 [PubMed]

Zang Y, Dieudonné S, De Schutter E. (2018). Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells Cell reports. 24 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.