Ariav G, Polsky A, Schiller J. (2003). Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

See more from authors: Ariav G · Polsky A · Schiller J

References and models cited by this paper

Abeles M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex..

Archie KA, Mel BW. (2000). A model for intradendritic computation of binocular disparity. Nature neuroscience. 3 [PubMed]

Arieli A, Sterkin A, Grinvald A, Aertsen A. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science (New York, N.Y.). 273 [PubMed]

Azouz R, Gray CM. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Azouz R, Gray CM. (2000). Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

Bernander O, Douglas RJ, Martin KA, Koch C. (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America. 88 [PubMed]

Bialek W, Rieke F. (1992). Reliability and information transmission in spiking neurons. Trends in neurosciences. 15 [PubMed]

Cash S, Yuste R. (1999). Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron. 22 [PubMed]

Colbert CM, Magee JC, Hoffman DA, Johnston D. (1997). Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Destexhe A, Mainen ZF, Sejnowski TJ. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of computational neuroscience. 1 [PubMed]

Destexhe A, Paré D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of neurophysiology. 81 [PubMed]

Dudek FE, Macvicar BA. (1981). Post-natal development of electrophysiological properties of art cerebral cortical pyramidal neurons J Physiol. 393

Golding NL, Spruston N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron. 21 [PubMed]

Golding NL, Staff NP, Spruston N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature. 418 [PubMed]

Harris KD et al. (2002). Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature. 417 [PubMed]

Helmchen F, Svoboda K, Denk W, Tank DW. (1999). In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature neuroscience. 2 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Hoffman DA, Magee JC, Colbert CM, Johnston D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 387 [PubMed]

Hopfield JJ. (1995). Pattern recognition computation using action potential timing for stimulus representation. Nature. 376 [PubMed]

Häusser M, Spruston N, Stuart GJ. (2000). Diversity and dynamics of dendritic signaling. Science (New York, N.Y.). 290 [PubMed]

Hô N, Destexhe A. (2000). Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. Journal of neurophysiology. 84 [PubMed]

Kamondi A, Acsády L, Buzsáki G. (1998). Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Larkum ME, Zhu JJ, Sakmann B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 398 [PubMed]

Lecar H, Nossal R. (1971). Theory of threshold fluctuations in nerves. I. Relationships between electrical noise and fluctuations in axon firing. Biophysical journal. 11 [PubMed]

Lecar H, Nossal R. (1971). Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise. Biophysical journal. 11 [PubMed]

Magee J, Hoffman D, Colbert C, Johnston D. (1998). Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annual review of physiology. 60 [PubMed]

Magee JC. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Magee JC. (2000). Dendritic integration of excitatory synaptic input. Nature reviews. Neuroscience. 1 [PubMed]

Mainen ZF, Sejnowski TJ. (1995). Reliability of spike timing in neocortical neurons. Science (New York, N.Y.). 268 [PubMed]

Marsálek P, Koch C, Maunsell J. (1997). On the relationship between synaptic input and spike output jitter in individual neurons. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]

Mechler F, Victor JD, Purpura KP, Shapley R. (1998). Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Mehta MR, Lee AK, Wilson MA. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. Nature. 417 [PubMed]

Mel BW. (1993). Synaptic integration in an excitable dendritic tree. Journal of neurophysiology. 70 [PubMed]

Mel BW. (1999). Why have dendrites? A computational perspective. Dendrites. Stuart G, Spruston N, and Hausser M eds..

Migliore M, Shepherd GM. (2002). Emerging rules for the distributions of active dendritic conductances. Nature reviews. Neuroscience. 3 [PubMed]

Oviedo H, Reyes AD. (2002). Boosting of neuronal firing evoked with asynchronous and synchronous inputs to the dendrite. Nature neuroscience. 5 [PubMed]

Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. Journal of neurophysiology. 79 [PubMed]

Poirazi P, Mel BW. (2001). Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron. 29 [PubMed]

Reyes A. (2001). Influence of dendritic conductances on the input-output properties of neurons. Annual review of neuroscience. 24 [PubMed]

Richmond BJ, Optican LM. (1987). Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. Journal of neurophysiology. 57 [PubMed]

Richmond BJ, Optican LM, Podell M, Spitzer H. (1987). Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. Journal of neurophysiology. 57 [PubMed]

Riehle A, Grün S, Diesmann M, Aertsen A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function. Science (New York, N.Y.). 278 [PubMed]

Rieke F, Warland D, de Ruyter van Steveninck, R, Bialek B. (1997). Spikes: Exploring The Neural Code.

Roelfsema PR, Engel AK, König P, Singer W. (1997). Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature. 385 [PubMed]

Schiller J, Major G, Koester HJ, Schiller Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature. 404 [PubMed]

Schiller J, Schiller Y. (2001). NMDA receptor-mediated dendritic spikes and coincident signal amplification. Current opinion in neurobiology. 11 [PubMed]

Schiller J, Schiller Y, Clapham DE. (1998). NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nature neuroscience. 1 [PubMed]

Schiller J, Schiller Y, Stuart G, Sakmann B. (1997). Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. The Journal of physiology. 505 ( Pt 3) [PubMed]

Schmitz D et al. (2001). Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron. 31 [PubMed]

Schwindt PC, Crill WE. (1995). Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. Journal of neurophysiology. 74 [PubMed]

Segev I, Rall W. (1987). Functional possibilities for synapses on dendrites and on dendritic spines. Synaptic Function. Edelman G, Gall W, and Cowan W eds..

Shadlen MN, Newsome WT. (1994). Noise, neural codes and cortical organization. Current opinion in neurobiology. 4 [PubMed]

Shadlen MN, Newsome WT. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Shepherd GM, Brayton RK. (1987). Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience. 21 [PubMed]

Singer W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron. 24 [PubMed]

Softky W. (1994). Sub-millisecond coincidence detection in active dendritic trees. Neuroscience. 58 [PubMed]

Softky WR, Koch C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Spencer WA, Kandel ER. (1968). Cellular and integrative properties of the hippocampal pyramidal cell and the comparative electrophysiology of cortical neurons. International journal of neurology. 6 [PubMed]

Steinmetz PN, Manwani A, Koch C, London M, Segev I. (2000). Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. Journal of computational neuroscience. 9 [PubMed]

Stevens CF, Zador AM. (1998). Input synchrony and the irregular firing of cortical neurons. Nature neuroscience. 1 [PubMed]

Stuart G, Schiller J, Sakmann B. (1997). Action potential initiation and propagation in rat neocortical pyramidal neurons. The Journal of physiology. 505 ( Pt 3) [PubMed]

Trussell LO. (1999). Synaptic mechanisms for coding timing in auditory neurons. Annual review of physiology. 61 [PubMed]

Vaadia E et al. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature. 373 [PubMed]

Valiante TA, Perez Velazquez JL, Jahromi SS, Carlen PL. (1995). Coupling potentials in CA1 neurons during calcium-free-induced field burst activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Wei DS et al. (2001). Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science (New York, N.Y.). 293 [PubMed]

Williams SR, Stuart GJ. (2002). Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science (New York, N.Y.). 295 [PubMed]

deCharms RC, Zador A. (2000). Neural representation and the cortical code. Annual review of neuroscience. 23 [PubMed]

van Vreeswijk C, Sompolinsky H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science (New York, N.Y.). 274 [PubMed]

References and models that cite this paper

Acker CD, Antic SD. (2009). Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. Journal of neurophysiology. 101 [PubMed]

Azouz R. (2005). Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited. Journal of neurophysiology. 94 [PubMed]

Azouz R, Gray CM. (2008). Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo. The European journal of neuroscience. 28 [PubMed]

Behabadi BF, Mel BW. (2014). Mechanisms underlying subunit independence in pyramidal neuron dendrites. Proceedings of the National Academy of Sciences of the United States of America. 111 [PubMed]

Bloss EB et al. (2018). Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. Nature neuroscience. 21 [PubMed]

Carnevale NT, Morse TM. (1996). Research reports that have used NEURON Web published citations at the NEURON website.

Diba K, Koch C, Segev I. (2006). Spike propagation in dendrites with stochastic ion channels. Journal of computational neuroscience. 20 [PubMed]

Djurisic M, Popovic M, Carnevale N, Zecevic D. (2008). Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Gasparini S, Migliore M, Magee JC. (2004). On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Gómez González JF, Mel BW, Poirazi P. (2011). Distinguishing Linear vs. Non-Linear Integration in CA1 Radial Oblique Dendrites: It's about Time. Frontiers in computational neuroscience. 5 [PubMed]

Katona G et al. (2011). Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons. Proceedings of the National Academy of Sciences of the United States of America. 108 [PubMed]

Keren N, Peled N, Korngreen A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. Journal of neurophysiology. 94 [PubMed]

London M, Roth A, Beeren L, Häusser M, Latham PE. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature. 466 [PubMed]

Major G, Polsky A, Denk W, Schiller J, Tank DW. (2008). Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. Journal of neurophysiology. 99 [PubMed]

Nevian T, Larkum ME, Polsky A, Schiller J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature neuroscience. 10 [PubMed]

Polsky A, Mel BW, Schiller J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature neuroscience. 7 [PubMed]

Rabinowitch I, Segev I. (2006). The interplay between homeostatic synaptic plasticity and functional dendritic compartments. Journal of neurophysiology. 96 [PubMed]

Rabinowitch I, Segev I. (2006). The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Rhodes P. (2006). The properties and implications of NMDA spikes in neocortical pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Rindner DJ, Proddutur A, Lur G. (2022). Cell-type specific integration of feedforward and feedback synaptic inputs in the posterior parietal cortex Neuron. 110 [PubMed]

Shu Y, Duque A, Yu Y, Haider B, McCormick DA. (2007). Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. Journal of neurophysiology. 97 [PubMed]

Sidiropoulou K, Poirazi P. (2012). Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS computational biology. 8 [PubMed]

Sun Q, Srinivas KV, Sotayo A, Siegelbaum SA. (2014). Dendritic Na+ spikes enable cortical input to drive action potential output from hippocampal CA2 pyramidal neurons. eLife. 3 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.