Santhakumar V, Aradi I, Soltesz I. (2005). Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. Journal of neurophysiology. 93 [PubMed]

See more from authors: Santhakumar V · Aradi I · Soltesz I

References and models cited by this paper

Aaron GB, Dichter MA. (2001). Excitatory synapses from CA3 pyramidal cells onto neighboring pyramidal cells differ from those onto inhibitory interneurons. Synapse (New York, N.Y.). 42 [PubMed]

Acsády L, Kamondi A, Sík A, Freund T, Buzsáki G. (1998). GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Amaral DG. (1978). A Golgi study of cell types in the hilar region of the hippocampus in the rat. The Journal of comparative neurology. 182 [PubMed]

Annegers JF, Coan SP. (2000). The risks of epilepsy after traumatic brain injury. Seizure. 9 [PubMed]

Aradi I, Holmes WR. (1999). Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. Journal of computational neuroscience. 6 [PubMed]

Aradi I, Soltesz I. (2002). Modulation of network behaviour by changes in variance in interneuronal properties. The Journal of physiology. 538 [PubMed]

Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Bikson M, Hahn PJ, Fox JE, Jefferys JG. (2003). Depolarization block of neurons during maintenance of electrographic seizures. Journal of neurophysiology. 90 [PubMed]

Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. (1998). Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nature medicine. 4 [PubMed]

Bruton C. (1988). The Neuropathology of Temporal Lobe Epilepsy.

Buckmaster PS, Dudek FE. (1997). Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. The Journal of comparative neurology. 385 [PubMed]

Buckmaster PS, Dudek FE. (1999). In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. Journal of neurophysiology. 81 [PubMed]

Buckmaster PS, Strowbridge BW, Kunkel DD, Schmiege DL, Schwartzkroin PA. (1992). Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus. 2 [PubMed]

Buckmaster PS, Strowbridge BW, Schwartzkroin PA. (1993). A comparison of rat hippocampal mossy cells and CA3c pyramidal cells. Journal of neurophysiology. 70 [PubMed]

Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA. (1996). Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. The Journal of comparative neurology. 366 [PubMed]

Buckmaster PS, Yamawaki R, Zhang GF. (2002). Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. The Journal of comparative neurology. 445 [PubMed]

Buckmaster PS, Zhang GF, Yamawaki R. (2002). Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Buhl EH, Otis TS, Mody I. (1996). Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science (New York, N.Y.). 271 [PubMed]

Bush PC, Prince DA, Miller KD. (1999). Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model. Journal of neurophysiology. 82 [PubMed]

Chen K et al. (2001). Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature medicine. 7 [PubMed]

Chen K, Baram TZ, Soltesz I. (1999). Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nature medicine. 5 [PubMed]

Collingridge GL, Gage PW, Robertson B. (1984). Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. The Journal of physiology. 356 [PubMed]

Coulter DA. (1999). Chronic epileptogenic cellular alterations in the limbic system after status epilepticus. Epilepsia. 40 Suppl 1 [PubMed]

Coulter DA. (2000). Mossy fiber zinc and temporal lobe epilepsy: pathological association with altered "epileptic" gamma-aminobutyric acid A receptors in dentate granule cells. Epilepsia. 41 Suppl 6 [PubMed]

Coulter DA. (2001). Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. International review of neurobiology. 45 [PubMed]

Coulter DA et al. (1996). Brain injury-induced enhanced limbic epileptogenesis: anatomical and physiological parallels to an animal model of temporal lobe epilepsy. Epilepsy Res. 26

Desmond NL, Levy WB. (1985). Granule cell dendritic spine density in the rat hippocampus varies with spine shape and location. Neuroscience letters. 54 [PubMed]

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 107 [PubMed]

Feng L, Molnár P, Nadler JV. (2003). Short-term frequency-dependent plasticity at recurrent mossy fiber synapses of the epileptic brain. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Freund TF, Buzsáki G. (1996). Interneurons of the hippocampus. Hippocampus. 6 [PubMed]

Fricke RA, Prince DA. (1984). Electrophysiology of dentate gyrus granule cells. Journal of neurophysiology. 51 [PubMed]

Földy C, Aradi I, Howard A, Soltesz I. (2004). Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. The European journal of neuroscience. 19 [PubMed]

Geiger JR, Lübke J, Roth A, Frotscher M, Jonas P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron. 18 [PubMed]

Golarai G, Greenwood AC, Feeney DM, Connor JA. (2001). Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Gutiérrez R. (2002). Activity-dependent expression of simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers in vitro. Journal of neurophysiology. 87 [PubMed]

Hama K, Arii T, Kosaka T. (1994). Three-dimensional organization of neuronal and glial processes: high voltage electron microscopy. Microscopy research and technique. 29 [PubMed]

Harney SC, Jones MV. (2002). Pre- and postsynaptic properties of somatic and dendritic inhibition in dentate gyrus. Neuropharmacology. 43 [PubMed]

Heinemann U et al. (1992). The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy research. Supplement. 7 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Houser CR. (1999). Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Advances in neurology. 79 [PubMed]

Ishizuka S, Kosaka T. (1998). Physiological properties of mouse hippocampal mossy cells. Neuroreport. 9 [PubMed]

Jennett B. (1975). Epilepsy After Nonmissile Head Injuries.

Jeub M, Lie A, Blümcke I, Elger CE, Beck H. (1999). Loss of dynorphin-mediated inhibition of voltage-dependent Ca2+ currents in hippocampal granule cells isolated from epilepsy patients is associated with mossy fiber sprouting. Neuroscience. 94 [PubMed]

Johnston D, Magee JC, Colbert CM, Cristie BR. (1996). Active properties of neuronal dendrites. Annual review of neuroscience. 19 [PubMed]

Katona I, Freund TF, Acsady L, Buzsaki G. (1998). Selective perisomatic innervation of hilar interneurons and mossy cells by local gabaergic afferents Eur J Neurosci. 10

Kneisler TB, Dingledine R. (1995). Synaptic input from CA3 pyramidal cells to dentate basket cells in rat hippocampus. The Journal of physiology. 487 [PubMed]

Kneisler TB, Dingledine R. (1995). Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus. Hippocampus. 5 [PubMed]

Kraushaar U, Jonas P. (2000). Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Lawrence JJ, Grinspan ZM, McBain CJ. (2004). Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. The Journal of physiology. 554 [PubMed]

Lothman EW, Stringer JL, Bertram EH. (1992). The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy research. Supplement. 7 [PubMed]

Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. (1992). Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 12 [PubMed]

Lytton WW, Hellman KM, Sutula TP. (1998). Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artificial intelligence in medicine. 13 [PubMed]

Lübke J, Frotscher M, Spruston N. (1998). Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. Journal of neurophysiology. 79 [PubMed]

MacVicar BA, Dudek FE. (1982). Electrotonic coupling between granule cells of rat dentate gyrus: physiological and anatomical evidence. Journal of neurophysiology. 47 [PubMed]

Maex R, De Schutter E. (2003). Resonant synchronization in heterogeneous networks of inhibitory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Magee JC. (2000). Dendritic integration of excitatory synaptic input. Nature reviews. Neuroscience. 1 [PubMed]

Margerison JH, Corsellis JA. (1966). Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain : a journal of neurology. 89 [PubMed]

Masukawa LM et al. (1999). Physiological and anatomical correlates of the human dentate gyrus: consequences or causes of epilepsy. Advances in neurology. 79 [PubMed]

Mathern GW et al. (1997). In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for N-methyl-D-aspartate, AMPA and GABA(A) receptors. Neuroscience. 77 [PubMed]

Mathern GW, Pretorius JK, Babb TL. (1995). Influence of the type of initial precipitating injury and at what age it occurs on course and outcome in patients with temporal lobe seizures. Journal of neurosurgery. 82 [PubMed]

Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D. (1995). Computer simulations of morphologically reconstructed CA3 hippocampal neurons. Journal of neurophysiology. 73 [PubMed]

Miles R, Wong RK. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. The Journal of physiology. 373 [PubMed]

Miles R, Wong RK. (1987). Inhibitory control of local excitatory circuits in the guinea-pig hippocampus. The Journal of physiology. 388 [PubMed]

Molnár P, Nadler JV. (1999). Mossy fiber-granule cell synapses in the normal and epileptic rat dentate gyrus studied with minimal laser photostimulation. Journal of neurophysiology. 82 [PubMed]

Molnár P, Nadler JV. (2001). Synaptically-released zinc inhibits N-methyl-D-aspartate receptor activation at recurrent mossy fiber synapses. Brain research. 910 [PubMed]

Mott DD, Turner DA, Okazaki MM, Lewis DV. (1997). Interneurons of the dentate-hilus border of the rat dentate gyrus: morphological and electrophysiological heterogeneity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Nadler JV. (2003). The recurrent mossy fiber pathway of the epileptic brain. Neurochemical research. 28 [PubMed]

Nissinen JPT, Kharatishvili I, Mcintosh TK, Pitkafinen A. (2003). Epileptogenesis induced by traumatic brain injury in rats Epilepsia. 44

Patton PE, McNaughton B. (1995). Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus. 5 [PubMed]

Rall W et al. (1992). Matching dendritic neuron models to experimental data. Physiological reviews. 72 [PubMed]

Ratzliff Ad, Howard AL, Santhakumar V, Osapay I, Soltesz I. (2004). Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Ratzliff Ad, Santhakumar V, Howard A, Soltesz I. (2002). Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends in neurosciences. 25 [PubMed]

Ross ST, Soltesz I. (2000). Selective depolarization of interneurons in the early posttraumatic dentate gyrus: involvement of the Na(+)/K(+)-ATPase. Journal of neurophysiology. 83 [PubMed]

Santhakumar V et al. (2000). Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. The Journal of physiology. 524 Pt 1 [PubMed]

Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I. (2001). Long-term hyperexcitability in the hippocampus after experimental head trauma. Annals of neurology. 50 [PubMed]

Scharfman HE. (1991). Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 11 [PubMed]

Scharfman HE. (1993). Characteristics of spontaneous and evoked EPSPs recorded from dentate spiny hilar cells in rat hippocampal slices. Journal of neurophysiology. 70 [PubMed]

Scharfman HE. (1995). Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. Journal of neurophysiology. 74 [PubMed]

Scharfman HE, Smith KL, Goodman JH, Sollas AL. (2001). Survival of dentate hilar mossy cells after pilocarpine-induced seizures and their synchronized burst discharges with area CA3 pyramidal cells. Neuroscience. 104 [PubMed]

Sik A, Penttonen M, Buzsáki G. (1997). Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. The European journal of neuroscience. 9 [PubMed]

Sloviter RS. (1991). Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the "dormant basket cell" hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus. 1 [PubMed]

Sloviter RS. (1994). The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Annals of neurology. 35 [PubMed]

Sloviter RS et al. (2003). "Dormant basket cell" hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. The Journal of comparative neurology. 459 [PubMed]

Soltesz I, Santhakumar V, Kaila K, Voipio J. (2003). Post-traumatic hyperexcitability is not caused by impaired buffering of extracellular potassium. J Neurosci. 23

Staley KJ, Otis TS, Mody I. (1992). Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. Journal of neurophysiology. 67 [PubMed]

Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. (1989). Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Annals of neurology. 26 [PubMed]

Sutula TP, Golarai G, Cavazos J. (1992). Assessing the functional significance of mossy fiber sprouting. Epilepsy research. Supplement. 7 [PubMed]

Toth Z, Hollrigel GS, Gorcs T, Soltesz I. (1997). Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Traub RD, Jefferys JG, Whittington MA. (1994). Enhanced NMDA conductance can account for epileptiform activity induced by low Mg2+ in the rat hippocampal slice. The Journal of physiology. 478 Pt 3 [PubMed]

Traub RD, Knowles WD, Miles R, Wong RK. (1987). Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice. Neuroscience. 21 [PubMed]

Walker MC, Ruiz A, Kullmann DM. (2001). Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron. 29 [PubMed]

Wang XJ, Tegnér J, Constantinidis C, Goldman-Rakic PS. (2004). Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proceedings of the National Academy of Sciences of the United States of America. 101 [PubMed]

Wenzel HJ, Buckmaster PS, Anderson NL, Wenzel ME, Schwartzkroin PA. (1997). Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus. 7 [PubMed]

Wenzel HJ, Woolley CS, Robbins CA, Schwartzkroin PA. (2000). Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus. 10 [PubMed]

White JA, Chow CC, Ritt J, Soto-Treviño C, Kopell N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of computational neuroscience. 5 [PubMed]

Zhang N, Houser CR. (1999). Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: a study of reorganized mossy fiber synapses. The Journal of comparative neurology. 405 [PubMed]

References and models that cite this paper

Anderson WS, Kudela P, Cho J, Bergey GK, Franaszczuk PJ. (2007). Studies of stimulus parameters for seizure disruption using neural network simulations. Biological cybernetics. 97 [PubMed]

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. (2016). Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife. 5 [PubMed]

Bogaard A, Parent J, Zochowski M, Booth V. (2009). Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Chambers JD, Bornstein JC, Gwynne RM, Koussoulas K, Thomas EA. (2014). A detailed, conductance-based computer model of intrinsic sensory neurons of the gastrointestinal tract. American journal of physiology. Gastrointestinal and liver physiology. 307 [PubMed]

Chavlis S, Petrantonakis PC, Poirazi P. (2017). Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus. 27 [PubMed]

Cutsuridis V, Cobb S, Graham BP. (2010). Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus. 20 [PubMed]

Cutsuridis V, Poirazi P. (2015). A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiology of learning and memory. 120 [PubMed]

Dyhrfjeld-Johnsen J et al. (2007). Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. Journal of neurophysiology. 97 [PubMed]

Gleeson P et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS computational biology. 6 [PubMed]

Gleeson P, Steuber V, Silver RA. (2007). neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron. 54 [PubMed]

Hines ML, Carnevale NT. (2008). Translating network models to parallel hardware in NEURON. Journal of neuroscience methods. 169 [PubMed]

Hines ML, Eichner H, Schürmann F. (2008). Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. Journal of computational neuroscience. 25 [PubMed]

Hines ML, Markram H, Schürmann F. (2008). Fully implicit parallel simulation of single neurons. Journal of computational neuroscience. 25 [PubMed]

Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I. (2007). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. Journal of neurophysiology. 97 [PubMed]

Jacob T et al. (2019). A Proposed Mechanism for Spontaneous Transitions between Interictal and Ictal Activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]

Jedlicka P, Benuskova L, Abraham WC. (2015). A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo. PLoS computational biology. 11 [PubMed]

Jedlicka P, Deller T, Gutkin BS, Backus KH. (2011). Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus. 21 [PubMed]

Jedlicka P et al. (2011). Increased dentate gyrus excitability in neuroligin-2-deficient mice in vivo. Cerebral cortex (New York, N.Y. : 1991). 21 [PubMed]

Lombardi A, Jedlicka P, Luhmann HJ, Kilb W. (2019). Interactions Between Membrane Resistance, GABA-A Receptor Properties, Bicarbonate Dynamics and Cl-Transport Shape Activity-Dependent Changes of Intracellular Cl- Concentration International journal of molecular sciences. 20 [PubMed]

Marasco A, Limongiello A, Migliore M. (2012). Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Scientific reports. 2 [PubMed]

Migliore M, Cannia C, Lytton WW, Markram H, Hines ML. (2006). Parallel network simulations with NEURON. Journal of computational neuroscience. 21 [PubMed]

Morgan RJ, Santhakumar V, Soltesz I. (2007). Modeling the dentate gyrus. Progress in brain research. 163 [PubMed]

Morgan RJ, Soltesz I. (2008). Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proceedings of the National Academy of Sciences of the United States of America. 105 [PubMed]

Proddutur A, Yu J, Elgammal FS, Santhakumar V. (2013). Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations. Chaos (Woodbury, N.Y.). 23 [PubMed]

Schwarzacher SW, Cuntz H, Jedlicka P, Beining M, Mongiat LA. (2017). T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells eLife.

Tejada J, Arisi GM, García-Cairasco N, Roque AC. (2012). Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable. PloS one. 7 [PubMed]

Tejada J, Garcia-Cairasco N, Roque AC. (2014). Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus. PLoS computational biology. 10 [PubMed]

Thomas EA, Petrou S. (2013). Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia. 54 [PubMed]

Thomas EA, Reid CA, Berkovic SF, Petrou S. (2009). Prediction by modeling that epilepsy may be caused by very small functional changes in ion channels. Archives of neurology. 66 [PubMed]

Thomas EA, Reid CA, Petrou S. (2010). Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability. Epilepsia. 51 [PubMed]

Yim MY, Hanuschkin A, Wolfart J. (2015). Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus. 25 [PubMed]

Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V. (2013). Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. Journal of neurophysiology. 109 [PubMed]

Świetlik D, Białowąs J, Kusiak A, Cichońska D. (2018). A computational simulation of long-term synaptic potentiation inducing protocol processes with model of CA3 hippocampal microcircuit. Folia morphologica. 77 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.