Patlak J. (1991). Molecular kinetics of voltage-dependent Na+ channels. Physiological reviews. 71 [PubMed]

See more from authors: Patlak J

References and models cited by this paper
References and models that cite this paper

Andreozzi E, Carannante I, D'Addio G, Cesarelli M, Balbi P. (2019). Phenomenological models of NaV1.5. A side by side, procedural, hands-on comparison between Hodgkin-Huxley and kinetic formalisms Scientific reports. 9 [PubMed]

Balbi P, Massobrio P, Hellgren Kotaleski J. (2017). A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms. PLoS computational biology. 13 [PubMed]

Baranauskas G, Martina M. (2006). Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Clay JR, Paydarfar D, Forger DB. (2008). A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons. Journal of the Royal Society, Interface. 5 [PubMed]

Deister CA, Chan CS, Surmeier DJ, Wilson CJ. (2009). Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Gurkiewicz M, Korngreen A. (2007). A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS computational biology. 3 [PubMed]

Gurkiewicz M, Korngreen A, Waxman SG, Lampert A. (2011). Kinetic modeling of Nav1.7 provides insight into erythromelalgia-associated F1449V mutation. Journal of neurophysiology. 105 [PubMed]

Hennings K, Arendt-Nielsen L, Andersen OK. (2005). Breakdown of accommodation in nerve: a possible role for persistent sodium current. Theoretical biology & medical modelling. 2 [PubMed]

Kahlig KM, Misra SN, George AL. (2006). Impaired inactivation gate stabilization predicts increased persistent current for an epilepsy-associated SCN1A mutation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Menon V, Spruston N, Kath WL. (2009). A state-mutating genetic algorithm to design ion-channel models. Proceedings of the National Academy of Sciences of the United States of America. 106 [PubMed]

Patel SP, Campbell DL. (2005). Transient outward potassium current, 'Ito', phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. The Journal of physiology. 569 [PubMed]

Sangrey TD, Friesen WO, Levy WB. (2004). Analysis of the optimal channel density of the squid giant axon using a reparameterized Hodgkin-Huxley model. Journal of neurophysiology. 91 [PubMed]

Schwarz JR, Reid G, Bostock H. (1995). Action potentials and membrane currents in the human node of Ranvier. Pflugers Archiv : European journal of physiology. 430 [PubMed]

Thomas EA, Petrou S. (2013). Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia. 54 [PubMed]

Wang S et al. (2005). Time- and voltage-dependent components of Kv4.3 inactivation. Biophysical journal. 89 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.