Izhikevich EM. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural networks. 15 [PubMed]

See more from authors: Izhikevich EM

References and models cited by this paper

Connors BW, Gutnick MJ. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in neurosciences. 13 [PubMed]

Ermentrout B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural computation. 8 [PubMed]

Fitzhugh R. (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophysical journal. 1 [PubMed]

Gibson JR, Beierlein M, Connors BW. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature. 402 [PubMed]

Gray CM, McCormick DA. (1996). Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science (New York, N.Y.). 274 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Hodgkin AL. (1948). The local electric changes associated with repetitive action in a non-medullated axon. The Journal of physiology. 107 [PubMed]

Izhikevich EM. (1999). Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE transactions on neural networks. 10 [PubMed]

Izhikevich EM. (2000). Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng. 10

Izhikevich EM. (2001). Resonate-and-fire neurons. Neural networks : the official journal of the International Neural Network Society. 14 [PubMed]

Izhikevich EM. (2003). Simple model of spiking neurons. IEEE transactions on neural networks. 14 [PubMed]

Izhikevich EM. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.

Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in neurosciences. 26 [PubMed]

Izhikevich EM, Gally JA, Edelman GM. (2004). Spike-timing dynamics of neuronal groups. Cerebral cortex (New York, N.Y. : 1991). 14 [PubMed]

Izhikevich EM, Hoppensteadt FC. (1997). Weakly Connected Neural Networks.

Kistler WM, Gerstner W. (2002). Spiking neuron models.

Kopell N, Ermentrout GB. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. Siam J Appl Math. 46

Latham PE, Richmond BJ, Nelson PG, Nirenberg S. (2000). Intrinsic dynamics in neuronal networks. I. Theory. Journal of neurophysiology. 83 [PubMed]

Lisman JE. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in neurosciences. 20 [PubMed]

Morris C, Lecar H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical journal. 35 [PubMed]

Rinzel J, Ermentrout GB. (1989). Analysis of neuronal excitability and oscillations Methods In Neuronal Modeling: From Synapses To Networks.

Rose RM, Hindmarsh JL. (1989). The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model. Proceedings of the Royal Society of London. Series B, Biological sciences. 237 [PubMed]

Smith GD, Cox CL, Sherman SM, Rinzel J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of neurophysiology. 83 [PubMed]

Wilson HR. (1999). Simplified dynamics of human and mammalian neocortical neurons. Journal of theoretical biology. 200 [PubMed]

References and models that cite this paper

Badel L et al. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of neurophysiology. 99 [PubMed]

Baladron J, Nambu A, Hamker FH. (2019). The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study. The European journal of neuroscience. 49 [PubMed]

Destexhe A. (2009). Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of computational neuroscience. 27 [PubMed]

Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

Hendrickson EB, Edgerton JR, Jaeger D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of computational neuroscience. 30 [PubMed]

Horcholle-Bossavit G, Quenet B. (2009). Neural model of frog ventilatory rhythmogenesis. Bio Systems. 97 [PubMed]

Huang C, Zeldenrust F, Celikel T. (2022). Cortical Representation of Touch in Silico Neuroinformatics. 20 [PubMed]

Humphries MD, Gurney K. (2007). Solution methods for a new class of simple model neurons. Neural computation. 19 [PubMed]

Humphries MD, Lepora N, Wood R, Gurney K. (2009). Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Frontiers in computational neuroscience. 3 [PubMed]

Izhikevich EM. (2006). Polychronization: computation with spikes. Neural computation. 18 [PubMed]

Janjic P, Solev D, Kocarev L. (2023). Non-trivial dynamics in a model of glial membrane voltage driven by open potassium pores Biophysical journal. 122 [PubMed]

Jolivet R, Gerstner W. (2004). Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of physiology, Paris. 98 [PubMed]

Jolivet R et al. (2008). A benchmark test for a quantitative assessment of simple neuron models. Journal of neuroscience methods. 169 [PubMed]

Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]

Kobayashi R, Tsubo Y, Shinomoto S. (2009). Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in computational neuroscience. 3 [PubMed]

Komarov M et al. (2018). New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. Journal of computational neuroscience. 44 [PubMed]

Lundqvist M, Rehn M, Djurfeldt M, Lansner A. (2006). Attractor dynamics in a modular network model of neocortex. Network (Bristol, England). 17 [PubMed]

Ly C, Tranchina D. (2007). Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural computation. 19 [PubMed]

Marasco A et al. (2023). An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bulletin of mathematical biology. 85 [PubMed]

Matsubara T, Torikai H. (2016). An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities. IEEE transactions on neural networks and learning systems. 27 [PubMed]

Mensi S et al. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of neurophysiology. 107 [PubMed]

Mondal A, Upadhyay RK. (2018). Diverse neuronal responses of a fractional-order Izhikevich model: journey from chattering to fast spiking Nonlinear Dynamics. 91

Muresan RC, Savin C. (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of neurophysiology. 97 [PubMed]

Naundorf B, Geisel T, Wolf F. (2005). Action potential onset dynamics and the response speed of neuronal populations. Journal of computational neuroscience. 18 [PubMed]

Pernelle G, Nicola W, Clopath C. (2018). Gap junction plasticity as a mechanism to regulate network-wide oscillations. PLoS computational biology. 14 [PubMed]

Pospischil M et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological cybernetics. 99 [PubMed]

Richert M, Nageswaran JM, Dutt N, Krichmar JL. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers in neuroinformatics. 5 [PubMed]

Rulkov NF, Timofeev I, Bazhenov M. (2004). Oscillations in large-scale cortical networks: map-based model. Journal of computational neuroscience. 17 [PubMed]

Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]

Schmerl BA, McDonnell MD. (2013). Channel noise induced stochastic facilitation in an auditory brainstem neuron model Physical review. E, Statistical, nonlinear, and soft matter physics. 88 [PubMed]

Sen-Bhattacharya B et al. (2017). A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine. Frontiers in neuroscience. 11 [PubMed]

Sharma SK, Mondal A, Mondal A, Upadhyay RK, Hens C. (2020). Emergence of bursting in a network of memory dependent excitable and spiking leech-heart neurons. Journal of the Royal Society, Interface. 17 [PubMed]

Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.

Stewart RD, Bair W. (2009). Spiking neural network simulation: numerical integration with the Parker-Sochacki method. Journal of computational neuroscience. 27 [PubMed]

Susi G et al. (2021). FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency Scientific reports. 11 [PubMed]

Swiercz W et al. (2006). A new synaptic plasticity rule for networks of spiking neurons. IEEE transactions on neural networks. 17 [PubMed]

Teka W, Marinov TM, Santamaria F. (2014). Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS computational biology. 10 [PubMed]

Teramae JN, Fukai T. (2007). Local cortical circuit model inferred from power-law distributed neuronal avalanches. Journal of computational neuroscience. 22 [PubMed]

Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Tomov P, Pena RF, Zaks MA, Roque AC. (2014). Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in computational neuroscience. 8 [PubMed]

Touboul J, Brette R. (2008). Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biological cybernetics. 99 [PubMed]

Valero MR, Hale N, Tang J, Jiang L. (2017). A comprehensive mechanotransduction model for tactile feedback based on multi-axial stresses at the fingertip-contact interface 2017 IEEE World Haptics Conference (WHC).

Versace M, Ames H, Léveillé J, Fortenberry B, Gorchetchnikov A. (2008). KInNeSS: a modular framework for computational neuroscience. Neuroinformatics. 6 [PubMed]

Świetlik D, Białowąs J, Kusiak A, Cichońska D. (2018). Memory and forgetting processes with the firing neuron model. Folia morphologica. 77 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.