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1 Introduction

The HGF toolbox provides generic methods for fitting time series models using Bayesian
inference.

It is built around the Hierarchical Gaussian Filter (HGF). It may therefore not contain
your favorite time series model. However, the toolbox’s modular nature should make it
easy to add new models (see Section 6 below).

The HGF was introduced in Mathys et al. (2011) and elaborated in Mathys et al. (2014).
Whenever you make use of one of the various models based on the HGF, please cite these
papers.

As shown in Figure 1, the toolbox assumes a framework where an agent in the broadest
sense (e.g., a human being, an animal, a machine, the stock market, etc.) receives a time
series of inputs to which it reacts by emitting a time series of responses. In particular,
this process is modeled by the combination of a perceptual (sc. state space) model and
an observation (sc. decision or response) model. The perceptual model is the time series
model on which the agent bases its responses; the response model describes how the
agent makes decisions based on its perceptual inference.

Note that what we refer to here as the observation model describes a ”second-order”
observation in the sense that the perceptual model already contains a (”first-order”)
observation part that describes how perceptual states relate to inputs. This implements
the ”observing the observer” framework described in Daunizeau et al. (2010a).

2 Usage

There are two main ways to use the HGF toolbox. The first is to fit various combinations
of perceptual and observation models to observed responses (Figure 2).

The second main usage is to simulate the trajectories of beliefs about external states,
and responses based on these beliefs (Figure 3).

In simpler cases (e.g., when simply filtering inputs), only the evolution of the perceptual
inference is of interest and the the specification of a response model is unnecessary
(Figure 4).

3 Installation

Move the main folder with all its contents to a location of your choice and add it to
your Matlab path.

4 Documentation and tutorial demo

Documentation is contained in this manual and throughout the code. To find out what
a particular file does, consult the comments at the head of its source code.

A good way to get started with the toolbox is to do the tutorial demo by calling
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Figure 1: General framework. An agent is connect to the external world by its sensory input

u and by the actions y it takes in response. Inputs are used to infer hidden states of the world,

beliefs λ about which are encoded internally. Inference rests on a perceptual model parameterized by

χ. Actions depend on beliefs λ and are described by a response model parameterized by ζ.

>> tapas_hgf_demo()

This walks you through the main ways to use the toolbox.

5 Main functions

Each of the two usages (cf. Section 2) has its main function. The function

tapas_fitModel(...)

fits models to observed responses, while the function

tapas_simModel(...)

simulates the trajectories of perceptual states and responses. These two main functions
will be explained in turn in what follows.
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Figure 2: Parameter estimation. When both inputs and responses are known, the parameters

of the perceptual and the response model can be estimated, and the resulting estimate of the percep-

tual parameters implies trajectories of beliefs about hidden external states. Parameter estimation is

performed by the function tapas fitModel(...).

5.1 tapas fitModel(...)

5.1.1 Background

In order to fit a model, you have to make three choices:

1) A perceptual model,

2) A response model, and

3) An optimization algorithm.

The perceptual model can for example be a Bayesian generative model of the states
of an agent’s environment (like the HGF) or a reinforcement learning algorithm (like
Rescorla-Wagner). It describes the states or values that probabilistically determine ob-
served responses.

The response model describes how the states or values of the perceptual model map
onto responses. Examples are the softmax decision rule or the closely related unit-square
sigmoid decision model.

The optimization algorithm is used to determine the maximum-a-posteriori (MAP) es-
timates of the parameters of both the perceptual and decision models. Its objective
function is the unnormalized log-posterior of all perceptual and response parameters,
given the data and the perceptual and response models. This corresponds to the log-joint
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Figure 3: Simulation of belief trajectories and responses. When the parameters of the

perceptual and the response model are given in addition to the inputs, belief trajectories and responses

can be simulated. This is performed by the function tapas simModel(...).

of data and parameters, given the models.

Perceptual and response models have to be chosen so that they are compatible, while
the choice of optimization algorithm is independent.

5.1.2 Configuration

Once you have made your choice, go to the relevant configuration files (e.g.,
tapas hgf binary config.m), read the model- and algorithm-specific information there,
and configure accordingly.

Usage then is:

>> est = tapas_fitModel(responses, inputs, <prc_model>,

<obs_model>, <opt_algo>);

where the last three arguments are strings containing the names of the corresponding
configuration files (without the extension .m).

These last three arguments are optional. If they are omitted the defaults configured in
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Figure 4: Simulation of belief trajectories only. The function tapas fitModel(...) can be

called without specifying a response model.

tapas fitModel.m are used.

5.1.3 Using placeholder values

For inputs that lie on a continuous scale, the configuration files of some perceptual mod-
els accept placeholders that are replaced by values derived from the inputs at runtime
(see the documentation in the relevant configuration files). This makes it easy to auto-
matically set, for example, the prior mean of the main quantity of interest the value of
the first input.

5.1.4 Usage

>> est = tapas_fitModel(responses, inputs);

5.1.5 Input arguments

responses

Array of binary responses (column vector(s))

inputs
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Array of inputs (column vector(s))

Code irregular (missed, etc.) responses as NaN. Such responses will be ignored.
However, the trial as such will not be ignored and filtering will take place based
on the input.

To ignore a trial, code the input as NaN. In this case, filtering is suspended for this
trial and all representations (i.e., inferences on hidden states) will remain constant.

Note that an input is often a composite event, for example a cue-stimulus contin-
gency. If the agent you are modeling is learning such contingencies, inputs have to
be coded in contingency space (e.g., blue cue → reward as well as green cue → no
reward is coded as 1 while blue cue → no reward as well as green cue → reward
is coded as 0). The same applies to responses.

If needed for a specific application, responses and inputs can be matrices with
further columns. The coding of irregular and ignored trials described above then
applies to their first column.

5.1.6 Output

est.u

Input to agent (i.e., the inputs array from the arguments)

est.y

Observed responses (i.e., the responses array from the arguments)

est.irr

Index numbers of irregular trials

est.ign

Index numbers of ignored trials

est.c prc

Configuration settings for the chosen perceptual model (see the configuration file
of the model in question for details)

est.c obs

Configuration settings for the chosen observation model (see the configuration file
of the model in question for details)

est.c opt

Configuration settings for the chosen optimization algorithm (see the configuration
file of the algorithm in question for details)

est.optim

A place where information on the optimization results is stored (e.g., measures of
model quality like LME, AIC, BIC, and posterior parameter correlation)

est.p prc
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Maximum-a-posteriori estimates of perceptual parameters (see the configuration
file of your perceptual model for details)

est.p obs

Maximum-a-posteriori estimates of observation parameters (see the configuration
file of your observation model for details)

est.traj

Trajectories of the environmental states tracked by the perceptual model (see the
configuration file of that model for details)

5.1.7 New datasets

When analyzing a new dataset, take your inputs and use tapas bayes optimal config

(or tapas bayes optimal binary config for binary inputs, or similar depending on
your perceptual model) as your observation model. This determines the Bayes optimal
perceptual parameter values (i.e., the parameter values that result in the agent being
least surprised overall at the inputs it receives). You can then use the optimal parameter
values as your new prior means.

5.1.8 Plotting of results

To plot the trajectories of the inferred perceptual states (as implied by the estimated pa-
rameters), there is a function tapas <modelname> plotTraj(...) for each perceptual
model. This takes the structure returned by tapas fitModel(...) as its only argu-
ment.

Additionally, the function tapas fit plotCorr(...) plots the posterior correlation of
the estimated parameters. It takes the structure returned by tapas fitModel(...) as
its only argument. Note that this function only works if the optimization algorithm
makes the posterior correlation available in est.optim.Corr.

5.1.9 Example

>> est = tapas_fitModel(responses, inputs);

>> tapas_hgf_binary_plotTraj(est)

>> tapas_fit_plotCorr(est)

5.1.10 Bayesian parameter averaging

It is often useful to average parameters from several estimations, for instance to compare
groups of subjects. This can be achieved by using the function
tapas bayesian parameter average(...) which takes into account the covariance
structure between the parameters and weights individual estimates according to their
precision.

Bayesian parameter averaging only works for estimates that are based on the same priors
and should only be used with care for estimates based on different inputs.
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5.1.11 Model comparison

For each model estimation, the toolbox calculates three measures of model goodness that
can be used for model comparison. The first of these is the log-model evidence (LME),
calculated as the negative variational free energy under the Laplace assumption. In
addition to the LME, AIC and BIC are calculated, which in turn are approximations
to the negative variational free energy. This makes the LME the measure of choice for
model comparison, while AIC and BIC are only provided because some audiences are
more familiar with them.

LMEs can be used to calculate Bayes factors by exponentiating the difference in LME
between two models applied to the same dataset. For example, an LME difference of 3
implies a Bayes factor of about 20.

For a fixed-effects analysis with several datasets (e.g., from different subjects), add up
the LMEs for the different datasets and compare the LME sums.

For a random-effects analysis, use the function spm BMS(...) from the SPM software
package (http://www.fil.ion.ucl.ac.uk/spm/) and see Stephan et al. (2009) for the the-
oretical background.

5.2 tapas simModel(...)

5.2.1 Background

In order to simulate perceptual states (and, optionally, responses) in this framework,
one has to choose a perceptual model (and, optionally, an observation model to simulate
responses).

The perceptual model can for example be a Bayesian generative model of the states
of an agent’s environment (like the HGF) or a reinforcement learning algorithm (like
Rescorla-Wagner). It describes the states or values that probabilistically determine ob-
served responses.

The observation model describes how the states or values of the perceptual model map
onto responses. Examples are the softmax decision rule or the closely related unit-square
sigmoid decision model.

5.2.2 Usage

>> sim = tapas_simModel(inputs, prc_model, prc_pvec,

obs_model, obs_pvec);

5.2.3 Input arguments

inputs

Array of inputs (column vector(s))

To ignore the input of a trial, code the input as NaN. In this case, filtering is
suspended for this trial and all representations (i.e., inferences on hidden states)
will remain constant.
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Note that an input is often a composite event, for example a cue-stimulus contin-
gency. If the agent you are modeling is learning such contingencies, inputs have to
be coded in contingency space (e.g., blue cue → reward as well as green cue → no
reward is coded as 1 while blue cue → no reward as well as green cue → reward
is coded as 0). The same applies to responses.

If needed for a specific application, inputs can be a matrix with further columns.
The coding of ignored trials described above then applies to its first column.

prc model

The perceptual model (e.g., tapas hgf or tapas hgf binary)

prc pvec

Row vector of perceptual model parameter values (see the corresponding model’s
configuration file).

obs model

The observation model (e.g., tapas gaussian obs or tapas softmax binary)

obs pvec

Row vector of observation model parameter values (see the corresponding model’s
configuration file).

The last two input arguments are optional. If they are missing, no responses will be
simulated.

To learn more about the various perceptual and observation models, refer to the com-
ments in their configuration files (e.g., for tapas hgf binary to
tapas hgf binary config.m).

5.2.4 Output

sim.u

Input to agent (i.e., the inputs array from the arguments)

sim.ign

Index numbers of ignored trials

sim.c sim

Information on the models used in the simulation

sim.p prc

The perceptual parameters as given in pvec prc in the configuration file of the
perceptual model.

sim.p obs

The observation parameters as given in pvec obs in the configuration file of the
observation model.
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sim.traj

Trajectories of the environmental states tracked by the perceptual model (see the
configuration file of that model for details)

sim.y

Simulated responses

5.2.5 Plotting of results

To plot the trajectories of the perceptual states implied by the chosen parameter values,
there is a function tapas <modelname> plotTraj(...) for each perceptual model. This
takes the structure returned by tapas simModel(...) as its only argument.

5.2.6 Example

>> sim = tapas_simModel(u, ’tapas_hgf_binary’,

[NaN 0 1 NaN 1 1 NaN 0 0 NaN 1 NaN -2.5 -6],

’tapas_unitsq_sgm’, 5);

>> tapas_hgf_binary_plotTraj(sim)

6 Adding models

Owing to its modular structure, the toolbox allows you to add perceptual and observa-
tion models of your choice. This requires the following files containing the corresponding
functions that tapas fitModel(...) and tapas simModel(...) will expect to find (re-
place <modelname> by the name of your model):

tapas <modelname>.m

Contains the model machinery

tapas <modelname> config.m

Contains the configuration settings (only for tapas fitModel(...))

tapas <modelname> transp.m

Transforms parameters from the space they are estimated in to their native space
(only for tapas fitModel(...) and tapas bayesian parameter average(...))

tapas <modelname> namep.m

Returns a structure of named parameters (only for tapas simModel(...))

Additionally, for observation models, tapas simModel(...) expects to find a function
that performs the simulation of responses:

tapas_<modelname>_sim.m

For details, look at the corresponding files of an existing model (e.g., tapas hgf binary.m,

etc.) and use them as templates.
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7 Adding optimization algorithms

To add a new optimization algorithm, provide the following functions that
tapas fitModel(...) will expect to find (replace <algo> by the name of your algo-
rithm):

tapas <algo>

Contains the machinery of the algorithm

tapas <algo> config

Contains the configuration settings

For details, see the corresponding files of an existing algorithm (e.g.,
tapas quasinewton optim.m) and use them as templates.

8 Selection of published studies using the toolbox

In addition to papers cited throughout, the references at the end of this manual contain
a selection of published studies where the HGF Toolbox was used.
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