TITLE nacurrent.mod
COMMENT
The current implementation here is adapted from modeldb.yale.edu/136715 (the
Fleidervish et al 2010 author's hh_Cs_scaled.mod) which is a modified
(wrt rate functions and temperature dependence) version of NEURON's hh.mod,
which is an implementation of the original Hodgkin-Huxley equations.
Note: This mechanism is temperature dependent.
Note: Unlike Hodgkin-Huxley (and hh.mod), this file only describes a
sodium current.
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
NEURON {
SUFFIX nacurrent
USEION na READ ena WRITE ina
RANGE gnabar, gna
GLOBAL minf, hinf, mtau, htau
THREADSAFE
}
PARAMETER {
gnabar = .0 (S/cm2) <0, 1e9>
}
STATE {
m (1)
h (1)
}
ASSIGNED {
v (mV)
celsius (degC)
ena (mV)
gna (S/cm2)
ina (mA/cm2)
minf (1)
hinf (1)
mtau (ms)
htau (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gna = gnabar * m * m * m * h
ina = gna * (v - ena)
}
INITIAL {
rates(v)
m = minf
h = hinf
}
DERIVATIVE states {
rates(v)
m' = (minf - m) / mtau
h' = (hinf - h) / htau
}
PROCEDURE rates(v(mV)) {
: Computes rate and other constants at specified v.
LOCAL alpha, beta, sum, q10
TABLE minf, mtau, hinf, htau DEPEND celsius FROM -100 TO 100 WITH 200
UNITSOFF
q10 = 3 ^ ((celsius - 23) / 10)
: "m" sodium activation
alpha = -.182 * vtrap(-(v + 40), 6)
beta = -.124 * vtrap((v + 40), 6)
sum = alpha + beta
mtau = 0.25 / (q10 * sum)
minf = alpha / sum
: "h" sodium inactivation
alpha = -0.015 * vtrap((v + 66), 6)
beta = -0.015 * vtrap(-(v + 66), 6)
sum = alpha + beta
htau = 1 / (q10 * sum)
hinf = alpha / sum
}
FUNCTION vtrap(x, y) {
: Avoids divide by zero errors in rate functions by replacing with limit
if (fabs(x / y) < 1e-6) {
vtrap = -y * (1 - x / y / 2)
} else {
vtrap = x / (1 - exp(x / y))
}
}
UNITSON