ttxSoma = 0		// simulate 20nM TTX in bath?  0 = no; 1 = yes

celsius = 35
v_init = -70
			
global_ra=200.00 	// internal resistivity in ohm-cm 
Cm=1.5  		// specific membrane capacitance in uF/cm^2 
Cmy=0.075 		// capacitance in myelin 
Rm=40000		// specific membrane resistivity in ohm-cm^2  
Rn=50			// nodal resistivity 
Vleak=-66		// leak reversal -66 in Cs+
Vrest=-70		// resting potential -60 in control, -66 in Cs+

ttxScale = 0.5		// amount that 20 nM TTX scales the available Na conductance; 1=no block; 0 = complete block

spinelimit=100      	// distance beyond which to modify for spines 
spinefactor=2.0     	// factor by which to change passive properties 

gnainit0 = 0.042	// Na conductance at soma
gnaslope0 = 0.000025	// Na channel density decay per um
gnabar=0.042		// sodium conductance 
gnode=0 //40.0		// sodium conductance at a node; MSC switched this 

setgk = .036		// A-type potassium starting density, used in init_bday.hoc
setokslope = 0		// slope of A-type potassium conductance along individual oblique branches. set to 0 in all simulations

gcad = 0.00125		// L-type Ca density, from Poirazi et al., 2003
caslope = 0

gkdr=0.040          	// delayed rectifier density 
gkap=setgk          	// proximal A-type potassium starting density 
gkad=setgk          	// distal A-type potassium  starting density 

dlimit=300          	// cut-off for increase of A-type density 
dprox=50           	// distance to switch from proximal to distal type 
dslope=0.01         	// slope of A-type density 

okslope = setokslope	// oblique potassium channel gradient 
okmax = .5		// max potassium channel conductance  

ampaWeight = 0.00018 	// in uS; Jarsky et al., 2005
nmdaWeight = 0.00018	// in uS

theSeed = 1		// seed of random number generator

numSyn = 150	 	// number of synapses

slowInact = 0		// amount of slow inactivation.  1 = no slow inact; 0 = complete slow inact

// gnaTuft0 and gnaTuftS are not used
gnaTuft0 = 0.04		// initial VGNaC denisty in the tuft
gnaTuftS = 0.00002	// slope of VGNaC density in the tuft