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Izhikevich (2003) proposed a new canonical neuron model of spike gener-
ation. The model was surprisingly simple yet able to accurately replicate
the firing patterns of different types of cortical cell. Here, we derive a
solution method that allows efficient simulation of the model.

1 Introduction

Two constraining criteria govern the choice of neuron models: accuracy and
speed. If a model is highly accurate in its behavior, it probably demands
too much computation time to be used in large networks; if a model has
a low computation time, it is probably not accurate enough to capture all
key dynamic properties of the modeled cell. As modelers, we seek efficient
models that maximize the trade-off between accuracy and speed and which
thus allow networks of sufficiently accurate neurons to be simulated com-
fortably on modest computing resources: this search has led to the proposal
of numerous models.

Izhikevich (2003) proposed a simple neuron model that was far more
accurate in its replication of membrane potential behavior than the common
leaky integrate-and-fire model, but that was not much more complex in its
mathematical form. An equivalent, biophysical form of the model is given
in Izhikevich (2006), which we use here. If v is the membrane potential and
u is the dominant slow current of the neuron class, then

Co=k(v—v)(v—v)—u+1I, (1.1)
w=alblv—v)—u], (1.2)

with reset condition
if v > vpeak then v < c, u <~ u+d,

where C is capacitance, v, and v are the resting and threshold potentials,
a is the time constant of the slow current, and c is the reset potential (i.e.,
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the value of the membrane potential immediately after an action potential
is fired). Parameters k and b are derived from the current-voltage relation
of the neuron, and d is tuned to achieve the desired spiking behavior. All
of these parameters are given constant values for a specific neuron class,
and the range of spike train phenomena captured by this two-dimensional
model is impressive (Izhikevich, 2004).

The rationale behind Izhikevich’s original work was to provide a better
accuracy-speed trade-off than was available in existing models (Izhikevich,
2004). Notwithstanding the success of this program, our aim was to improve
this trade-off even further by finding better solution methods for the model
than those used in its original deployments (Izhikevich, 2004; Izhikevich,
Gally, & Edelman, 2004).

2 A Zero-Order Hold Solution

In all example simulations and code that Izhikevich (2006) provides and
in the large-scale model of cortex (Izhikevich et al., 2004), a forward Euler
update is used as the numerical method for solving equations 1.1 and 1.2:
given a time step of At, a differential i is approximated at time ¢ + At by
y(t + At) = y(t) + At j(t). Forward Euler is the simplest form of numer-
ical integration but has considerable problems of stability and accuracy
under certain conditions unless a small time step is used (Hansel, Mato,
Meunier, & Neltner, 1998). Its main advantage is that each equation need be
computed only once per time step. However, there are other once-per-time-
step numerical integration methods available that achieve better levels of
accuracy, as usually required in simulating neural models.

One method, used with coupled ordinary differential equations (ODEs)
of the form i = f (V. ¥ ;. - - ), is to treat the other time-dependent vari-
ables (y;, yj, ...) in each equation as constant over some small time interval
At (equivalent to approximating these variables by the zeroth-order terms
in their Taylor series expansions). If there is an exact solution for each of
the resulting equations i = f (v, D), where D is constant, then these may
be used to determine y(t + At) by holding suitable sets of variables con-
stant at any one time. With two equations (as in equations 1.1 and 1.2), we
simply solve exactly each equation by holding the other variable constant.
This scheme is referred to as the zero-order hold approximation (ZOH) and has
been used, for example, to solve Hodgkin-Huxley type models (Dayan &
Abbot, 2001). Solving the typical form of the equations for neural models in
this way produces solutions that are grouped as a numerical method called
exponential Euler: the neural simulator GENESIS uses this a solution method
(Bower & Beeman, 1998). We now show that the zero-order hold technique
may be applied to the Izhikevich model equations.

2.1 Slow Current. We begin with the slow current u, as this has a
straightforward solution. We take equation 1.2 and assume v to be constant
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between an initial fy and current time t, and solve. Noting that the right-
hand-side of equation 1.2 has no explicit dependence on time, it is trivially
linearly separable in u,t and can be solved exactly using an integrating
factor e/ * 9t = e*:

t
u(t) = u(ty)e ¢ +/ ab(v — v)e " Idz.

fo

Assuming constant v, the solution is therefore
u(t) = b(v — v)[1 — e 1] 4 y(tg)e 1), 2.1)

We use this as a discrete-time approximation of u after some small time step
At with the replacements ¢ < fy + At.

Izhikevich (2006) gives some models of specific neuron species that de-
rive u from a slightly different approximation to the dynamics of the slow
current. However, the resulting form of u is similar to equation 1.2, and so
rederiving the ZOH solution to replace equation 2.1 is straightforward. We
give an example for the model of cortical fast-spiking interneurons, as we
use this model later: the form of u for this model is

—au, ifv < vy,
a[bv—w)®—u], ifv>uw,

and there is no reset of u following a spike (i.e., d = 0). Given bounds #, and
t as before, the solutions are

u(t) = {u(to)e—w—fo), if v(ty) < vp 22)

b(v — vp)? [1 — e 0] 4 u(to)e™0=0) if v(fy) > wp.

2.2 The Membrane Potential. We begin the same way as above: we
take equation 1.1 and assume u to be constant over some small time interval
between the start of integration fy and current time ¢, and solve (we assume
I to be a constant current injection, so the solution is exact in I as well). In
general, nonlinear ODEs do not have a solution; fortunately, equation 1.1 is
a special case and can be expanded out into

. kvove—u+1 0 k(v +wy) k ,
_ _ - 2.
) c C v+Cv, (2.3)

which is a Riccati differential equation, of the form o = P(t) + Q(t)v +
R(t)v?. These can be solved by substituting z = 1/(v — v1), where v; is a par-
ticular solution to v. Since P, Q, R are in fact independent of time (because
of our assumptions of constancy), the equation for z is (trivially) linearly
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separable: z = — [Q(t) + 2v1 R(#)] z — R(t). Having solved this in terms of z,
we can solve for v with the relation v = vy + 1/z.

Finding a particular solution to equation 2.3 by inspection is difficult,
so we propose here a simple method that generates a particular solution,
and thus allows the solution of any Ricatti differential (we are not aware
of this method previously appearing in the literature). We seek a particular
solution by putting v = 0 since, with I and u constant, we then obtain a
simple quadratic in v

kv? — k(v 4+ v)v — 1 + I + kvevg = 0,

which has solutions

k(vs + vy
ii%%fﬁ;A:/kuw+mf_%pﬂ+1+hwg 2.4)

V1 =

Since we need only one particular solution, we choose the root with +A.
Now that we have an expression for the particular solution v, we can
complete the substitution to express equation 2.3 in terms of z,

Z:_{_k(vr+vt)+2|:k(vr+vt)+A:| k}z_é’

C 2k C

which simplifies to the linearly separable form

1+ zz=- (2.5)

E-
This can be solved with an integrating factor e/ 4/C4t = ef4/C
solution between £, and t,

, giving the

t
k
za)=1/ —Yfeﬁ*ﬂmcdr+4be4Aﬂi (2.6)
fo

where Cy is a constant of integration (which we find below). Integrating
equation 2.6 gives

z(t) = _%(1 — e (t=)A/CY | CetA/C

and we go back to v with the relation given above to get

k(vy A k !
v(t) = % + [_Z(l — e_(t_tO)A/C) + Coe_tA/C] . (2.7)
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We now find Cj in terms of the initial value v(ty). Thus,

k(ve +v) + A n eh4/C
2k Co ’

v(f) =

and solving for Cy gives

-1
Co = e /€ | u(ty) — w ) (2.8)
2k
We substitute equation 2.8 into 2.7 to get the full ZOH solution for v:
k(ve +v) + A k -
po e+ A K —wac
w(hy= " S e
k At

4 et A/C [v(to) _ k(vr +zl]:) + } } ’ 2.9)

where A is given in equation 2.4. Again this becomes a discrete-time
solution with the replacement t < fy + At. Spike detection and reset in
discrete time is handled by: if v(fy + At) > vpeak then v(ty + At) < ¢, u(to +
At) < u(ty + At) + d. Following Izhikevich (2006), we also set v(t) = vpeak-

2.3 Potential Limitations of the Solution. For some values of u and I,
the particular solution v; found by setting ¥ = 0 may have complex roots
(with A imaginary). This implies that © has no fixed point and will escape
to infinity in a finite time. However, even if v; is complex, it can be shown
that the resulting value for v is always real as required. Let us assume that
Ais imaginary, that is, A =i B. Substituting this in equation 2.9 and using
the Euler identity (¢! = cos6 + i sin0) gives

v(t)= (Ur ;_ vt)
Y cos X + (kY?/B)sin X — (B /4k)sin X

* 2(1 + cos X) + (2kY/B)sin X — 2 (kY/B)* (—1 + cos X)

(2.10)

where X = —(t — tp)B/C and Y = v(ty) — (vr + v)/2. Notice that v is always
real and that our method for finding a particular solution thus produces
sensible results. In addition, equation 2.10 gives a form for the calculation
of v that avoids having to represent and compute complex numbers in
simulation.

As with any other numerical method, it is useful to find an upper
bound on At. Our limit here is the value beyond which the assumption
of constant u in equation 1.1 and constant v in equation 1.2 breaks down.
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Ideally, for equation 1.1, u(ty) > Atii(t), so that the deviation from a con-
stant value of u over At is very small (based on the Taylor series expansion,
and assuming contribution from higher-order terms will be negligible).
Thus, a reasonable upper bound is At < u(ty)/it(ty). Similarly, for equation
1.2, the upper bound is At < v(ty)/0(ty). These bounds should hold for most
but not all ¢ (if v does escape to infinity in a finite time, as when a spike
is produced, then the ratios would also go to infinity and should be dis-
counted).

3 Comparison of Numerical Solution Methods

For a given time step, the forward Euler method is always the fastest fixed-
step solution method (in terms of computation time), as it requires one
multiplication and one addition operation per ODE above the floating-point
operation requirements of the ODE system itself. This, combined with its
ease of implementation, explains its widespread use in neural modeling
(including the solution of Izhikevich’s model neurons). Conversely, one
would expect that the forward Euler method is always the least accurate
fixed-step solution for a given time step (Hansel et al., 1998). We thus com-
pare our zero-order hold (ZOH) solutions and forward Euler as numerical
methods for solving the simple model neurons to determine which method
is the more efficient (achieving the best accuracy-to-speed trade-off).

We use four classes of cortical neurons modeled as Izhikevich simple
model neurons: the regular-spiking (RS) neurons, intrinsically bursting (IB)
neurons, chattering (CH) neurons, and fast-spiking (FS) interneurons. Their
parameter values, taken from Izhikevich (2006), are given in the legend of
Figure 1. All model neurons were coded in both Matlab 7 (Mathworks) and
C versions to test differences due to language implementations (all code
available at www.abrg.group.shef.ac.uk). The C version used equation 2.10
if A, given by equation 2.4, was complex, and equation 2.9 otherwise. One
Matlab version (“control”) also used this system, and hence acted as a
control for other differences between the C and Matlab implementations;
the other Matlab version (“native") made use of Matlab’s built-in handling
of complex numbers and used equation 2.9 throughout.

As a benchmark for accuracy, we solved each model neuron with a high-
order variable-step solver, ode45 from the Matlab ODE suite: a Runge-
Kutta 4th-5th order formula, the Dormand-Prince pair (Ashino, Nagase, &
Vaillancourt, 2000). Each benchmark simulation for a model neuron class
was run for 1000 ms, with a current step I onset at 100 ms. Using the same
input, the fixed-step solutions (forward Euler and ZOH) were then assessed
for each time step At taken from the interval [0.01, 0.5]ms in increments of
0.01 ms, giving 50 tested time steps in total. (The upper limit of At = 0.5ms
was determined by computing the rough bounds on step size for the ZOH
method for each neuron class, as described above.) Each simulation using
a fixed-step solution terminated when the same number of spikes as the
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benchmark simulation (using the variable-step solver) had been produced.
Errors in solution were expressed as the mean error per spike for each At,
where each error per spike was given as the time difference between the
variable-step solution crossing vpe.k and the fixed-step solution’s crossing of
Upeak- The minimum possible error would thus be in the interval [0, At/2],
due to the quantization imposed by the fixed-step methods.

Computation times for the fixed-step solutions for each model neuron
class were also computed. For the Matlab versions, a batch of 30 simulations
was run for each At, and the time taken for each simulation was recorded.
The mean computation time was then calculated by averaging over that
batch. For the C versions, 30 batches of 1000 simulations were run for each
At, and the time taken for each batch was recorded. The mean computation
time was then calculated by averaging over all 30 batches.

For each language-implementation and neuron-class combination, we
took the mean computation times T?M(At), T®"*"(At) and mean errors
per spike EZ°"(At), E®e*(At) and calculated the following ratios: T*(At) =
Teuler(At)/ T*M(At) and EF(At) = E€Uler(At)/ E*°N(At). We expected (and in-
deed found) that T"(At) > 1 always, because the forward Euler method is
always faster for a given time step; we expected that E*(At) < 1 for most
time steps and neuron types, because the ZOH method is expected to be
more accurate than forward Euler. To express the accuracy-to-speed trade-
off, we calculate R(At) = T*(At) x E*(At). Thus, if R(At) > 1, then the mag-
nitude gain in accuracy by using the ZOH method is greater than the mag-
nitude loss in speed for that time step; in other words, the ZOH method is
more efficient.

We plot R(At) for each neuron class and language implementation com-
bination in Figure 1 (the log scale is used because if R(At) = 2 means that
the ZOH method was twice as efficient, then R(Af) = 0.5 means it was

Figure 1: Accuracy-to-speed trade-off for zero-order hold (ZOH) and forward
Euler numerical solutions to four classes of simple model neurons. A value of
R(At) > 1 (white area) indicates that the ZOH method had a greater magnitude
gain in accuracy than loss of speed for that time step, and thus achieved a better
accuracy-to-speed trade-off than forward Euler. (A) Native Matlab version,
making use of its built-in handling of complex numbers. (B) Control Matlab
version. (C) The C version, using an equivalent scheme to the control Matlab
version. The parameter values used for each model were as follows. Regular
spiking (RS) neuron: C =100, v, = —60, vy = —40, I =70, k =0.7, a = 0.03,
b = —2,c = —50,d = 100, vpeax = 35; Intrinsically bursting (IB) neuron: C = 150,
vy = =75, v =—451=500,k =12,a =0.01,b =5,c = =56, d = 130, vpeax =
50. Chattering (CH) neuron: C =50, v, = —60, v, = —40, I =200,k =1.5,a =
0.03,b =1,c = —40,d = 150, vpeax = 20. Fast-spiking (FS) interneuron: C = 20,
vy =—55v=—-40,1 =100,k =1, a =0.2,b =0.025,c = —45,d =0, vpeak =
25, and v, = —55 (see text).
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equivalently half as efficient). We find consistent patterns of dependence
on At for each neuron class across all language implementations. Solving
the RS class was always more efficient using forward Euler, an unsurpris-
ing result given the simple dynamics of this model. Solving the CH and
IB classes was always more efficient using the ZOH method, except at the
smallest At. In either Matlab version, solving the FS class was more effi-
cient using the ZOH method over the approximate interval At € [0.02, 0.3]
ms; over the same interval, the C version showed that neither method was
clearly more efficient: mean R(At) was ~1.17 over that interval.

Over all simulations we found (1) that the errors were identical to three
significant places between the two Matlab versions, verifying that equa-
tion 2.10 gives correct results in simulation; (2) that computation using
equation 2.10 was faster in Matlab than using built-in complex numbers,
hence the higher R(At) for the “control” Matlab version; and (3) that there
was a considerable difference in relative computation times across language
implementations (which was not dependent on the form of ZOH solution).
Across all neuron classes and time steps, the “control” Matlab version had
Tr(At) ~ 0.7 but the C version had T*(At) ~ 0.2.

4 Conclusion

The new simple neuron model of Izhikevich (2003) may provide the best
trade-off yet between computation time and accuracy for a model of spiking
activity. We have derived a new numerical solution to this model, which
may allow for significantly improved efficiency in simulation. Our numer-
ical simulations showed how this efficiency was dependent on the choice
of time step for most neuron classes. In general, we expect the choice of
time step to be away from the extremes of the range that we tested, around
At ~ 0.1. Too small (At ~ 0.01), and there is no gain in efficiency over more
accurate methods, including other fixed-step methods such as midpoint
(in simulation, we found that the fixed-step simulations in Matlab took at
least as long as those using the variable-step solver for At € [0.01, 0.05]).
Too large (At ~ 0.5), and enough error is introduced to the simulation to
markedly affect the results (in simulation, we found that the mean error
for the CH, IB, and FS neuron classes was at least 10 ms per spike). Thus,
from our results, we believe that ZOH is a more efficient solution method
for most neuron classes over the likely range of usable time steps.

Future work will determine how these results from a single-neuron case
extrapolate to a network. One might naively expect that errors in individual
neuron solutions would propagate through a network, leading to consider-
able accumulation of error over time; on the other hand, the firing of a spike
is dependent on multiple presynaptic firings, and thus the errors may be
absorbed in the naturally noisy process of spike accumulation. The choice of
network time step is more critical than for the single neuron: in addition to
reducing error (whether it propagates or not), the time step ideally should
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be smaller than any characteristic scale of the dynamics of interest, to avoid
artifactual oscillations and synchronizations caused by quantizing spikes
to the time-step.

The solution also forms the basis of further analytic studies of this neuron
class. For example, solutions 2.1 and 2.9 give exact values if equilibrium
solutions to the coupled system 1.1-1.2 exist for given parameter values
and injection currents.
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