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a b s t r a c t

The striatum, the principal input structure of the basal ganglia, is crucial to both motor control and
learning. It receives convergent input from all over the neocortex, hippocampal formation, amygdala
and thalamus, and is the primary recipient of dopamine in the brain. Within the striatum is a
GABAergic microcircuit that acts upon these inputs, formed by the dominant medium-spiny projection
neurons (MSNs) and fast-spiking interneurons (FSIs). There has been little progress in understanding
the computations it performs, hampered by the non-laminar structure that prevents identification of
a repeating canonical microcircuit. We here begin the identification of potential dynamically-defined
computational elements within the striatum. We construct a new three-dimensional model of the
striatal microcircuit’s connectivity, and instantiate this with our dopamine-modulated neuron models
of the MSNs and FSIs. A new model of gap junctions between the FSIs is introduced and tuned to
experimental data. We introduce a novel multiple spike-train analysis method, and apply this to the
outputs of the model to find groups of synchronised neurons at multiple time-scales. We find that,
with realistic in vivo background input, small assemblies of synchronised MSNs spontaneously appear,
consistent with experimental observations, and that the number of assemblies and the time-scale of
synchronisation is strongly dependent on the simulated concentration of dopamine. We also show that
feed-forward inhibition from the FSIs counter-intuitively increases the firing rate of theMSNs. Such small
cell assemblies forming spontaneously only in the absence of dopamine may contribute to motor control
problems seen in humans and animals following a loss of dopamine cells.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The striatum is a large subcortical nucleus that forms the prin-
cipal input structure of the basal ganglia. Diseases that directly af-
fect the striatum or its primary afferents – such as Huntington’s
or Parkinson’s disease – lead to profound deficits in motor con-
trol. In particular, loss of dopamine cells in Parkinson’s disease
and its animal models leads to motor symptoms of rigidity, aki-
nesia, and tremor (Ferro et al., 2005; Kirik, Rosenblad, & Bjork-
lund, 1998; Schwarting & Huston, 1996), and the striatum is the
main locus of dopamine’s action, containing the highest density
of dopamine receptors in the vertebrate brain (Dawson, Gehlert,
McCabe, Barnett, &Wamsley, 1986; Hurd, Suzuki, & Sedvall, 2001;
Richtand, Kelsoe, Segal, & Kuczenski, 1995). Moreover, an intact
dopamine system also seems to be critical formany forms of learn-
ing (Ferro et al., 2005; Whishaw & Dunnett, 1985), consistent with
reported correlations between dopamine cell firing and the predic-
tion error required by reinforcement learning theories (Redgrave

∗ Corresponding author. Tel.: +44 7932 780 235.
E-mail address:m.d.humphries@sheffield.ac.uk (M.D. Humphries).

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.07.018
& Gurney, 2006; Schultz, 2007). An intact striatum is similarly
required for successful acquisition of many instrumental condi-
tioning tasks (Yin & Knowlton, 2006). An understanding of the
striatum’s computational operationwould thus shed light on a fun-
damental contributor to both motor control and learning.
Within the striatum lies a complex, predominantly GABAergic,

microcircuit (Bolam et al., 2006). Medium spiny projection neu-
rons (MSNs) are the only output neurons and comprise up to 95%
of the cell population in rats, with GABAergic and cholinergic in-
terneurons formingmost of the remaining cell population. Despite
their comparatively small number, the GABAergic fast-spiking in-
terneurons (FSIs), in particular, exert a very strong influence on the
MSNs (Koos & Tepper, 1999), receive input from similar sources,
and are interconnected by both chemical synapses and gap junc-
tions. Dopamine has multiple effects on these neuron types, via
multiple receptor types: indeed, the exact effects of dopamine re-
ceptor activation on the MSN have been much debated (Surmeier,
Ding, Day, Wang, & Shen, 2007). Seemingly ideal for underpinning
its multiple functional roles, the striatum receivesmassive conver-
gent input from the neocortex, thalamus, hippocampal formation,
and amygdala (Glynn & Ahmad, 2002; Groenewegen, Wright, Bei-
jer, & Voorn, 1999; McGeorge & Faull, 1989; Smith, Raju, Pare, &
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Sidibe, 2004), and dopamine modulates the striatal neurons’ re-
sponses to them.
Despite, or perhaps due to, this complexity of structure and

input, there are few well-quantified theories of the striatum’s
computational role. Many theories of striatal-specific or global
basal ganglia function draw explicit attention to the role of the
inhibitory local MSN collaterals as a substrate for competitive
dynamics (e.g. Beiser & Houk, 1998; Frank, 2005; Pennartz,
Groenewegen, & da Silva, 1994; Wickens, Alexander, & Miller,
1991), whether that competition be labelled ‘decision making’,
‘motor program selection’ or ‘pattern classification’. Wickens
and colleagues’ domain hypothesis is the most developed, and
proposes that the basic computational element of the striatum
is the set – or ‘‘domain’’ – of all MSNs that are mutual
inhibitory (see e.g. Alexander & Wickens, 1993; Wickens et al.,
1991; Wickens, Kotter, & Alexander, 1995). In simulation, they
have shown that winner-takes-all like competition occurs within a
single domain, while winners-share-all dynamics (multiple active
neurons) occur in networks composed of multiple overlapping
domains (Alexander & Wickens, 1993; Wickens et al., 1991).
Similar results have been obtained in analytical studies of general
mutually inhibitory neural networks (Fukai & Tanaka, 1997).
All such theories of competitive dynamics are faced by the

problems that the inhibition provided by the local MSN collaterals
is weak (Czubayko & Plenz, 2002; Jaeger, Hitoshi, & Wilson, 1994;
Koos, Tepper, &Wilson, 2004; Taverna, vanDongen, Groenewegen,
& Pennartz, 2004; Tunstall, Oorschot, Kean, & Wickens, 2002), so
that a single MSN is only contacted by between 12%–18% of MSNs
in its dendritic field (Tepper, Koos, &Wilson, 2004), and thatmutual
inhibition is the exception rather than rule (Tepper et al., 2004;
Tunstall et al., 2002).
Some theories do predict such weak connections. Bar-Gad,

Morris, and Bergman (2003) have proposed that the striatum
compresses information relayed to it from the cortex, transmitting
back the compressed version via the basal ganglia output nuclei.
They noted that the two layer network formed by the striatum
and the output nuclei can be mapped to standard neural network
implementations of principal components analysis, and that
these require weak correlation in a layer corresponding to the
striatum. While an interesting hypothesis, this mapping does not
account for the microcircuit of the striatum, or the effects of the
numerous neuromodulators within it. Other models of the whole
basal ganglia circuit do not rely on the local collaterals within
the striatum for their computations, rather proposing that the
striatum is both an integrator of diverse cortical information and
a filter on weak cortical inputs, as the first stage of an input
selection mechanism implemented by the whole basal ganglia (as
opposed to just the striatum), (Gurney, Prescott, & Redgrave, 2001;
Humphries, Stewart, & Gurney, 2006) — but these models also do
not account for the striatal microcircuit.
Our aim is to find out what computations can be supported

by the intrinsic circuitry of the striatum, what – if any – ‘‘basic
computational elements’’ exist, and develop computational
theories of function on this basis. In particular, we wish to un-
derstand the role of the dominant GABAergic circuits of the stria-
tum: the rare, but powerful, FSIs, and the weak, asymmetrical, but
comparatively plentiful MSN local collaterals. Understanding the
contribution of all the striatum’s elements ideally requires large-
scale models (Djurfeldt, Ekeberg, & Lansner, 2008) that replicate
the neuron types, numbers, and connectivity at a one-to-one scale.
Suchmodels can give deep insight into the role of each neuron class
in local circuit dynamics.
The purpose of this paper is twofold. First, we draw together, for

the first time, a series of techniques we have developed for lever-
aging anatomical and physiological constraint data, some of which
promise general applicability (beyond the striatum) inmicrocircuit
construction: (1) a powerful computational neuroanatomymethod
for extracting the best connectivity statistics from impoverished
data; (2) the development of reduced models for dopamine mod-
ulation of striatal neurons, which replicate the output of detailed
compartmentalmodels; and (3) a rigorousmethod for spike gener-
ation which allows good approximation to cortical input. We add
to these here by introducing: (1) a gap junction model tunable to
known membrane properties; (2) a principled method for param-
eterising the spike generation tool based on anatomical and phys-
iological data; and (3) a novel method for detecting patterns in
multi-unit activity at multiple time-scales, with general applica-
bility to simulation or experimental data.
Second, we begin the identification of computational ele-

ments within the striatum, and examine how these might support
hypotheses for competitive dynamics underpinned by theGABAer-
gic neurons of the striatum. Specifically, we construct a three-
dimensional model of the striatal microcircuit’s connectivity, and
instantiate this with our dopamine-modulated neuron models of
the MSNs and FSIs. We apply our multiple spike-train analysis
to the outputs of this model to find groups of synchronised neu-
rons at multiple time-scales. We then show that, with realis-
tic in vivo background input, small assemblies of synchronised
MSNs spontaneously appear, consistent with experimental obser-
vations (Carrillo-Reid et al., 2008), and that the number of assem-
blies and the time-scale of synchronisation is strongly dependent
on the simulated concentration of dopamine.

2. Creating the striatal microcircuit

Building large-scale models at up to 1:1 scale, neuron for neu-
ron, is an ambitious aim. In particular, as recognised by the Blue
Brain Project (Markram, 2006), these models are severely limited
by the need for accurate connectivity. There is a wealth of stud-
ies showing how the structure of a network is a strong determi-
nant of its dynamics (see e.g. Galan, 2008; Kwok, Jurica, Raffone,
& van Leeuwen, 2007; Nishikawa, Motter, Lai, & Hoppensteadt,
2003), and that the typical fall-back of completely regular or ran-
dom networks give false impressions about both synchronisation
and stability (see especially Lago-Fernandez, Huerta, Corbacho, &
Siguenza, 2000; Watts & Strogatz, 1998). It is thus imperative that
we begin from as accurate a network structure as possible.

2.1. The striatal microcircuit

First, we specify the GABAergic microcircuit of the stria-
tum (Tepper et al., 2004). Fig. 1 shows its complete set of con-
nections and neuron types; these are intermingled throughout
the non-laminar structure of the striatum. The MSNs number
around 2,790,000 in the rat, with a (shrinkage-corrected) density
of 85,000 permm3 (Oorschot, 1996). Various estimates have placed
this total as anything up to 95% of all neurons in the striatum (Ger-
fen & Wilson, 1996), though a figure of 90% is more commonly
quoted (Kawaguchi, Wilson, Augood, & Emson, 1995). The MSNs
can be split into two populations on the basis of their dominant
expression of either the D1 or D2 dopamine receptor, and these
populations are of roughly equal size. In addition to their long ax-
onal projections to targets in the pallidum (D2MSNs) and substan-
tia nigra pars reticulata (D1MSNs), both types have extensive local
axon collaterals, which ramify in approximately the same volume
as the parent neurons’ dendrites.
The physiological class of FSIs seem to correspond to the class

of parvalbumin-immunoreactive interneurons (Kawaguchi, 1993),
and these comprise around 3%–5% of the striatal cell population
in the rat (Kawaguchi et al., 1995). Their axons remain wholly
in the striatum, and target both MSNs (Koos & Tepper, 1999)
and other FSIs (Kita, Kosaka, & Heizmann, 1990). In addition,
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Fig. 1. The striatal GABAergic microcircuit studied in this paper. Primary input
to the striatum comes from glutamatergic (GLU: •) fibres originating in the
neocortex, thalamus, hippocampal formation and amygdala, and dopaminergic
(DA: �) fibres originating in the hindbrain dopamine cell bands. All striatal axo-
dendritic connections (4) are GABAergic and hence inhibitory. The fast-spiking
interneurons (FSIs) can form dendro-dendritic gap junctions between them. The
medium spiny neuron (MSN) population can be divided in two on the basis of the
dominant dopamine receptor (D1 or D2) they express.

there are dendro-dendritic gap junctions between FSIs (Koos &
Tepper, 1999). Both MSNs and FSIs receive glutamatergic input
from cortical and thalamic sources, and dopaminergic input from
the hindbrain dopamine cell bands.
We focus on this microcircuit as the neuron types are the

best characterised (Tepper et al., 2004), but hence omit at least
two other physiological classes of interneuron found in the
striatum. The long-lasting hyperpolarisation class corresponds
to the large aspiny cholinergic interneurons (Kawaguchi, 1993).
We are focusing here on the short time-scale dynamics in the
striatum, which are thought to be dominated by the GABAergic
elements (Mallet, Le Moine, Charpier, & Gonon, 2005; Tepper
et al., 2004). Future work on this circuit will incorporate the
cholinergic interneurons, as they may play a role in setting the
dynamic state of the striatal network (Wickens et al., 1991) and
their regulation of dopamine release affects plasticity at cortico-
striatal synapses (Wang et al., 2006; Zhou, Wilson, & Dani, 2002).
The low-threshold spiking class corresponds to the interneurons
that co-express nitric oxide, somatostatin, and neuropeptide
Y (Kawaguchi, 1993; Kawaguchi et al., 1995); this class may also
express GABA (Kubota & Kawaguchi, 2000). The FSIs probably
dominate MSN behaviour, as they form far more synapses on
somas (Kubota & Kawaguchi, 2000), whereas the low-threshold
spiking neurons may form an inhibitory network between the
cholinergic interneurons (Sullivan, Chen, & Morikawa, 2008).

2.2. The neuroanatomical model

We developed a novel computational neuroanatomy method
to build a three-dimensional model of the striatum that is as
accurate as possible given current neuroanatomical data (Wood,
Humphries, & Gurney, 2007). The strength of this method is that it
can be updated and re-run each time new relevant data becomes
available. We review the outline of the method and the results
essential for reconstructing the network used here.
Our approach builds on the underlying assumption that the

probability of connection between a given pair of neurons
is proportional to the distance between the cell bodies, and
the overlap of their neurites at that distance. For a standard
axo-dendritic synapse, the probability of connection is thus
proportional to the joint volume occupied by both the axonal field
Table 1
Parameters for the expected number of contacts between neuron pairs.

Connection α β γ

MSN-MSN 0.5567 0.1212 0.008
FSI-MSN 0.5528 0.1184 0.0082
FSI-FSI 0.2216 0.083 0.008
FSI gap 0.2892 0.0099 0.0132

of the source neuron and the dendritic field of the target neuron.
However, like much neural tissue, detailed data on the dendrites,
axons, and their three-dimensional structurewere not available for
the MSNs and FSIs.
We thus developed the method outlined in Fig. 2. This method

relies on developing stochastic growth models for the dendrites
and axons of both MSNs and FSIs. For the dendritic trees, we
used an existing growth algorithm (Burke, Marks, & Ulfhake, 1992)
and found its parameters using a genetic algorithm search of a
fitness space defined by known parameters (e.g. number of branch
points) of the neuron type’s dendritic tree. For the axon, which
has a simpler structure, we created our own growth algorithm
based on known properties of MSN and FSI axons. By creating
models for the dendrite and axon structure, we had a full set of
data on the dendritic branches and axons at each distance from
the soma, including their approximate volume. Using the growth
algorithms, we produced a large number of dendritic trees and
axons to estimate the expected neurite volume.
Based on this, we could then compute the expected volume of a

sphere that was occupied by dendrite (or axon) at a given distance
from the cell body. Both MSNs (Wilson & Groves, 1980; Zheng &
Wilson, 2002) and FSIs (Kawaguchi, 1993; Koos & Tepper, 1999)
have approximately spherical dendritic and axonal fields, and so
we could compute the expected amount of neurite in all directions
— effectively modelling a mean-field dendrite or axon. Then, in
turn, we could compute the expected volume of overlap between
the spherical fields given the distance between cell bodies for each
connection type. For every 1µm3 voxel in this overlapping volume,
we computed the probability of its occupancy by both neurites
(axon and dendrite or dendrite and dendrite, depending on the
connection type) and thus the probability of a potential contact.
Summing over all voxels in the overlapping volume thus gave us
the expected number of contacts for each distance between cell
bodies.

2.3. Construction of the network

We found that the expected number of contacts between two
neurons, as a function of the distance ds between the two somas,
was well fitted by the truncated power law

Ec(ds) = αd−βs e
−dsγ , (1)

for every connection type. Table 1 gives the specific parameter
values for each of the four connection types in the striatal
GABAergic microcircuit: between MSNs formed by the local
axon collaterals synapsing on MSN dendritic trees; FSI axonal
connections on MSN dendritic trees; FSI axonal connections on
FSI dendritic trees; and gap junctions between FSI dendritic trees.
Fig. 2f shows the four resulting functions.
We use these functions to construct our striatal network. First,

we specify the three dimensions of our simulated region of the
striatum. The resulting volume V mm3 defines the number of neu-
rons (see Section 2.1): given the 85,000 MSNs per mm3 (Oorschot,
1996) we get V × 85, 000 MSNs, and 3% of this is added as
FSIs (Kawaguchi et al., 1995). All neurons are then randomly as-
signed a three-dimensional position within the defined volume,
with a minimum distance of 10 µm enforced.
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Fig. 2. Anatomy model construction. (a) We create complete dendrograms using
stochastic algorithms, bounded by known properties of the dendrites and axons.
This example shows all six dendrites of the complete dendrogram for one MSN.
(b) Each segment of each branch is modelled as a cylinder, whose diameter tapers
with distance from the soma— summing over all branches gives the total volume of
dendrite (or axon) at each distance from soma. (c)We then compute the proportion
of spherical volume occupied by dendrite (or axon) at each distance from the soma.
(d) Expected values for occupied volume are computed over many repetitions of
the growth algorithm. The result is a continuous function of volume occupancy
for each dendrite and axon type. (e) Volume of intersection of all dendrite and
axon fields found for each distance between somas; volume discretised into 1µm3
voxels. (f) For each voxel, given its distance from the respective somas, we compute
the probability of intersection between fields (dendrite-axon or dendrite-dendrite)
fromvolume occupancy functions (in panel d).We then sumover all probabilities to
get the expected number of contacts between neuron pairs as a function of distance
between their somas. These are all functions of the form (1), with parameters given
in Table 1; we use these functions to construct our network.

For all pairs of neurons with potential connections we then ap-
ply (1) with the appropriate parameters from Table 1 for the con-
nection type (MSN-MSN local collaterals, FSI-MSN axo-dendritic,
FSI-FSI axo-dendritic, FSI-FSI dendro-dendritic gap junctions). As
shown in Fig. 2f, the expected number of connections was always
much less than one, and so we used these functions as giving the
probability of connection given the distance between somas— then
the total number of such connections in a sufficiently large net-
workwould yield the same expected connection function.Wehave
successfully used this to build and runmodels up to 1mm3, though
the models we use here are kept small so that a thorough analysis
of the outputs remains tractable.

3. Model neurons

The model striatal network forms the basis for our study of its
dynamics. If we are to build at such scales, we require individual
neuron models that are simple enough to be computationally
tractable, but sufficiently complex to capture key membrane
properties that contribute to the characteristic behaviour of a
neuron species. Our neuronmodel of choice is the recent canonical
spiking model of Izhikevich (2007), which has been employed in
some notably large-scale models (Izhikevich, Gally, & Edelman,
2004).
We previously extended these model neurons by incorporating

dopaminergic modulation of intrinsic and synaptic ion-channels,
whichwe review below. In this paper we extend themodel further
by introducing a model of gap junctions between FSIs and tune
parameter values to data from gap-junction coupled cortical FSIs.

3.1. Reduced models of striatal neurons

In his recent book, Izhikevich (2007) gives a biophysical form
of his canonical model for spike generation. Given that v is the
membrane potential, and u is the contribution of the neuron class’s
dominant slow current, we have

C v̇ = k(v − vr)(v − vt)− u+ I (2)
u̇ = a [b(v − vr)− u] , (3)

with reset condition

if v ≥ vpeak then v← c, u← u+ d,

where C is capacitance, vr and vt are the resting and threshold
potentials, I is a current source, a is a time constant, and c
is the reset potential (i.e. the value of the membrane potential
immediately after an action potential is fired). Parameters k and
b are derived from the I–V curve of the neuron and d is tuned to
achieve the desired spiking behaviour. We solve all neuronmodels
using the forward Euler method with a time-step of 0.01 ms — this
small time-step is necessary because of the fast dynamics of the
FSI (Humphries & Gurney, 2007).

3.1.1. Dopamine-modulated MSNs
Izhikevich (2007) provided parameter values that modelled a

MSN response to current injection.We introduced a framework for
reformulating and extending thismodel to replicate the output of a
detailed dopamine-modulatedmulti-compartmentmodel (Moyer,
Wolf, & Finkel, 2007) — see (Humphries et al., submitted for
publication) for details. The MSN population is split in two by
the expression of the dominant dopamine receptor type (D1 or
D2). These receptors have different affects on both intrinsic and
synaptic ion channels (see Surmeier et al., 2007, for review). We
express the relative level of dopamine receptor occupancy by the
parameters φ1 (for D1) and φ2 (for D2), normalised to the interval
[0,1].We add dopaminergicmodulation of intrinsic ion channels in
D1 MSNs by extending (2) to

C v̇D1 = k(vD1 − vr)(vD1 − vt)− u+ I + φ1gDA(vD1 − EDA), (4)

where the term φ1gDA(vD1 − EDA) is sufficient to simulate
the hyperpolarising effect of D1 activation when at an already
hyperpolarised membrane potential, and the depolarising effect
of D1 activation when at an already depolarised membrane
potential (Surmeier et al., 2007).
For the D2 MSNs, we add dopaminergic modulation of intrinsic

ion channels by extending (2) to

C v̇D2 = k(1− αφ2)(vD2 − vr)(vD2 − vt)− u+ I, (5)

where we only decrease k by a factor of (1 − αφ2), which is
sufficient to model the increased sensitivity to injection current
following D2 activation (Moyer et al., 2007).
We model synaptic input to all the MSNs as

I = Iampa + B(v)Inmda + Igaba-fs + Igaba-ms, (6)

where both Iampa and Inmda are derived from cortical input,
Igaba-fs from FSI input, and Igaba-ms from local MSN collaterals.
Each synaptic input of type z (ampa, nmda, gaba-fs,gaba-ms) is
modelled by

Iz = ḡzhz(Ez − v), (7)
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Table 2
Intrinsic and synaptic parameters for themedium spiny neuronmodel. Dimensions
are given where applicable.

Parameter Value Source

C 50 pF Izhikevich (2007)
b −20 ’’
c −55 mV ’’
vr −80 mV ’’
vpeak 40 mV ’’
k 1.14 Humphries et al. (submitted for

publication)
vt −33.8 mV ’’
a 0.05 ’’
d 377 ’’
α 0.03 ’’
gDA 22.7 nS ’’
EDA −68.4 mV ’’
β1 3.75 ’’
β2 0.156 ’’
Eampa , Enmda 0 mV Moyer et al. (2007)
Egaba-fs, Egaba-ms −60 mV ’’
τampa 6 ms ’’
τnmda 160 ms ’’
τgaba-fs, τgaba-ms 4 ms ’’
gampa 6.1 nS Humphries et al. (submitted for

publication)
gnmda 3.05 nS ’’
ggaba-ms 4.36 nS ’’
ggaba-fs 21.8 nS ∼ 5×MSN conductance Koos et al.

(2004)
[Mg2+]0 1 mM Jahr and Stevens (1990)

where ḡz is the maximum conductance and Ez is the reversal
potential. We use the standard single exponential model of post-
synaptic currents

ḣz =
−hz(t)
τz

, and hz(t)← hz(t)+ S(t)/τz, (8)

where τz is the appropriate synaptic time constant, and S(t) is
the number of pre-synaptic spikes arriving at all the neuron’s
receptors of type z at time t . Finally, we have the term B(v)
that models the voltage-dependent magnesium plug in the NMDA
receptors (Moyer et al., 2007)

B(v) =
1

1+ [Mg
2+]0
3.57 exp (−v · 0.062)

, (9)

where [Mg2+]0 is the equilibrium concentration of magnesium
ions.
We add D1 receptor dependent enhancement of NMDA-evoked

EPSPs (Moyer et al., 2007) by

ID1nmda = Inmda(1+ β1φ1), (10)

and we add D2 receptor dependent attenuation of AMPA-evoked
EPSPs (Moyer et al., 2007) by

ID2ampa = Iampa(1− β2φ2), (11)

where β1 and β2 are scaling coefficients determining the relation-
ship between dopamine receptor occupancy and the effect magni-
tude. All parameter values are given in Table 2.

3.1.2. Dopamine-modulated FSIs
The FSIs only express the D1-family of receptors on their mem-

branes (Centonze et al., 2003). We add D1-receptor modulation by
extending (2) to

C v̇fs = k[vfs − vr(1− ηφ1)](vfs − vt)− ufs + I, (12)

where we increase the nominal resting potential vr by a factor
of (1 − ηφ1), following experimental data from Bracci, Centonze,
Bernardi, and Calabresi (2002) and Centonze et al. (2003).
Table 3
Intrinsic and synaptic parameters for the fast spiking interneuron model. Dimen-
sions are given where applicable. n.d.: no data.

Parameter Value Source

a 0.2 Izhikevich (2007)
b 0.025 ’’
d 0 ’’
k 1 ’’
vpeak 25 mV ’’
vb −55 mV ’’
C 80 pF Tateno et al. (2004)
c −60 mV ’’
vr −70 mV ’’
vt −50 mV ’’
η 0.1 fitted to Bracci and Panzeri (2006)
ε 0.625 fitted to Gorelova et al. (2002)
Eampa , Enmda 0 mV n.d.; set as for MSNs
Egaba-fs, Egaba-ms −60 mV ’’
τampa 6 ms ’’
τgaba-fs 4 ms ’’
gampa 61 nS n.d.; tuned to achieve realistic firing rates

(Section 5.2)
ggaba-fs 20 nS n.d.; assumes equivalent effect of FSI-FSI

contacts as FSI-MSN contacts
g 30 nS Section 3.1.3
τ 11 ms ’’

Following Izhikevich (2007), we use a nonlinear u term

u̇fs =
{
−aufs, if vfs < vb,

a
[
b(vfs − vb)3 − ufs

]
, if vfs ≥ vb,

(13)

that enables the FSI model to show Type 2 dynamics, particularly
a non-linear step at the start of its current-frequency curve from 0
to around 15–20 spikes/s.
Synaptic input to the striatal FSIs predominantly activates

GABAa or AMPA receptors (Blackwell, Czubayko, & Plenz, 2003),
NMDA receptors are rare. The dendrodendritic gap junctions
provide a further source of ‘‘synaptic’’ current (Koos & Tepper,
1999). Thus the synaptic current contributions are

I = Iampa + I∗gaba + Igap, (14)

where we add D2-receptor dependent modulation of GABAergic
input (Bracci et al., 2002; Centonze et al., 2003) by

I∗gaba = Igaba(1− εφ2), (15)

where Igaba is derived fromFSI input. All parameter values are given
in Table 3.

3.1.3. Tuning FSI gap junctions
A gap junction between FSIs i and j is modelled as a compart-

ment with voltage v∗ij , which has dynamics

τ v̇∗ij = (vi − v
∗

ij)(vj − v
∗

ij), (16)

where τ is a time constant for voltage decay, and vi and vj are the
membranepotentials of the FSI pair. The current introduced by that
cable to the FSI pair is then

I∗gap(i) = g(v
∗

ij − vi) I∗gap(j) = g(v
∗

ij − vj), (17)

where g is the effective conductance of the gap junction. The total
gap junction input Igap to an FSI is then the sum over all contribu-
tions I∗gap.
We hand-tuned τ and g using a pair of FSI models connected

by a gap junction. Our target data came from a study by Galarreta
and Hestrin (1999), in which a sinusoidal current at different
frequencies was injected into one of a gap-junction coupled pair
of cortical FSIs, and membrane voltages recorded from both: this
data is ideal as it provides both voltage coupling strength and
voltage phase-lag, which are affected by both g and τ . We injected
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Fig. 3. Tuning the gap junction model. Galarreta and Hestrin (1999) injected a
sinusoidal current into a cortical FSI at various frequencies, and recorded from
another connected to it by a gap junction. They computed both the coupling ratio
(�) and phase lag (•) of the second neuron’smembrane potentialwith respect to the
injected neuron. We similarly connected a pair of model FSIs with our gap junction
model, injected a sinusoidal current into one, and hand-tuned the gap junction
parameters (g and τ ) to fit the data. A qualitatively good match was achieved by
the model for both coupling ratio (�) and phase lag (©).

a sinusoidal current I into one FSI with an amplitude of 400 pA at
different frequencies and computed the coupling coefficient (ratio
of maximum amplitudes in the membrane voltages of the two
neurons) and the phase-lag (voltage-peak offset as a function of
the injection current frequency). Fig. 3 shows we achieved a good
qualitative match to both coupling coefficient and phase-lag from
the experimental data, with τ = 11 ms and g = 150 nS.
While this data-set was themost appropriate for tuning the gap

junction model, we cannot immediately use the value for g . Two
caveats have to be accounted for: first, that there is an unknown
number of other FSIs connected by gap junctions to the studied
pair; second, that the study was done in tissue from juvenile
rats, and so would over-express gap junctions (Belluardo et al.,
2000). Both of these would contribute to the decay of the coupling
coefficient. Thus, we find we need to re-scale g to account for
the approximate reduction in gap junctions in adult tissue and to
account for other connections. In further simulations we explored
fully-connected gap-junction networks of 3, 4 or 5 FSIs, asmight be
found in juvenile tissue. We found that repeating the same paired
recording protocol in these networks did indeed predict a dramatic
reduction in g: the multiple gap junctions acted to reinforce the
effects of the injection current on the un-injected neuron. A five-
fold reduction to g = 30 nS produced an equivalent fit to the
data in Fig. 3 for all three networks, and so we used that figure
here. This is also consistent with the comparatively weak coupling
coefficients of 3% and 20% that have been reported for the few
gap junction coupled striatal FSIs recorded to date (Koos & Tepper,
1999).

3.2. Input to network

In addition to its synaptic connections defined by our network
model, each neuron received an external input representing its
cortical afferents. In many spiking neuron models, afferent input
is generated by a set of Poisson processes. However, for large-
scale models where each neuron receives hundreds or thousands
of afferent inputs, this becomes unfeasible because of the memory
requirements. Recently we have developed a series of tools
addressing just this problem, using a method that collapses many
afferent trains into an single equivalent spike-event count.
Each spike-event generator directly produces the spike-events

that occur across N afferents to the neuron. At each time-step ∆t ,
and given a mean spike rate r , we compute the probability of a
spike per afferent as p(s) = r∆t . The total number of spike-events
S at each time-step is then just drawn from a binomial distribution
S = B(N, p(s)). The resulting time-series of spike-events is equiv-
alent to the pooling of N spike trains modelled as independent re-
newal processes, the superset that includes Poisson processes.
We define N and r for the striatal network for the tonic back-

ground in vivo state, by combining data from anatomy and electro-
physiology:
1. In a recent organotypic cortico-striatal-nigral co-culture study,
Blackwell et al. (2003) reported that a striatal MSN receives
an average of around 800 synaptic events per second during
its depolarised (‘‘up’’) state, but they could not distinguish
excitatory and inhibitory potentials.

2. The ratio of asymmetric (putative excitatory):symmetric (all
others) synapses in rat striatum is∼3.9:1 (Ingham, Hood, Tag-
gart, & Arbuthnott, 1998).

3. If we conservatively assume that half the asymmetric synapses
are cortical in origin, then we have a ratio of 2:1 potentially ac-
tive synapses in the co-culture.

4. Assuming this corresponds (roughly) to the proportion of glu-
tamate:GABA activity, then cortical activity accounts for ∼530
synaptic events per second.

5. Given the estimate of 4250 cortical inputs per MSN (Zheng &
Wilson, 2002), the average firing rate of those cortical neurons
is therefore∼0.12 spikes/s.

6. From in vivo extracellular recordings, we know that dedicated
cortico-striatal neurons tonically fire a maximum of 5 spikes/s
and pyramidal tract neurons with striatal collaterals tonically
fire around 15 spikes/s (Bauswein, Fromm, & Preuss, 1989;
Turner & DeLong, 2000). The former dominate in number over
the latter (Bauswein et al., 1989; Zheng & Wilson, 2002), sug-
gesting an overall mean rate around 2–5 spikes/s.

7. Taking the lower mean single neuron rate of 2 spikes/s, and the
estimate of 530 synaptic events per second, we see that just 265
active cortico-striatal neurons are required to achieve this — or
just 6% of the total afferent cortical population.

Overall then, tonic cortico-striatal activity sufficient to drive MSN
firing requires just N ' 250 trains, at a rate of r ' 2 spikes/s.
We hence use N = 250 and r = 1.9 spikes/s for the MSN input
throughout our simulations. In addition, we use the same N, r in
the spike-event generators for the FSIs, as there is no data on cor-
tical input to these neurons.

4. Detecting groups of synchronised cells in multi-unit data

We sought to identify potential candidates for the basic
computational elements of the striatum from the dynamics of
our large-scale models under background input. For our present
purposes, we wanted to find groups of co-active or mutually
antagonistic MSNs that could form the basis for competitive
dynamics within the striatum. In addition, we studied this input
regime to see if the reported striatal cell clusters, spontaneously
formed in vitro (Carrillo-Reid et al., 2008), could be identified in
our model. However, analysis methods suitable for exploratory
analysis of such large spike-train data-sets are lacking (Brown,
Kass, & Mitra, 2004). We therefore developed a new algorithm
for finding synchronised groups at multiple time-scales within a
multiple spike-train data-set.
At itsmost general, our algorithm follows a two-step procedure.

First, some measure of correlation between each pair (or more)
of neurons is computed, resulting in a correlation matrix. Second,
some method acts on this matrix to identify ‘‘strong’’ spike-train
correlations within groups of neurons, thereby grouping the data-
set into sets of neurons whose output is more related to each
other than with the remaining neurons. A group is thus 3 or more
neurons that are co-correlated. With this in mind, we detail our
specific algorithm (our present choices for these two steps are
specified in the Appendix):
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Fig. 4. Spontaneous dynamic clusters form at a characteristic time-scale in the
absence of dopamine. (a) Both (the number of groups (•) and the metric β (N) have
a unique maximum at δt = 800 ms, suggesting this is the characteristic time-
scale of the dominant dynamics. (b) For that time-scale, changing the threshold
θ for correlation reveals further structure. Both the number of groups and β are
maximum at θ = 0.1, 0.15. The reduction in both number of groups and β at the
strong correlation threshold θ = 0.05 illustrates that cell assemblies can exist at
multiple strengths of correlation.

1. For all N spike trains, correlate all N(N − 1)/2 unique pairs,
resulting in a correlation matrix Cwith entry Cij = Cji being the
correlation measure between spike-trains i and j. We use here
the normalised Hamming distance (see Appendix).

2. Threshold each correlation matrix with threshold θ , to create a
graph. In general the graph’s adjacencymatrixA is generated by
some function Aij = f (Cij, θ) ∈ {0, 1}, where a 1 denotes a link
between nodes i and j on the graph, and 0 denotes the absence
of a link. Here we use

Aij =
{
1 if Cij < θ
0 otherwise. (18)

Note that the sign of the comparison is dependent on the cor-
relation method chosen: this direction (<) is suitable for our
choice of Hamming distance, but would be reversed if, for ex-
ample, the absolute correlation coefficient was used instead.
Each retained link thus indicates the presence of a ‘‘strong’’
correlation between the respective neurons, where correlation
strength is parameterised by θ — the lower θ , the stronger the
correlations that make up the graph.

3. Remove all nodes with less than 2 links from A, resulting in re-
duced graph A∗, which has n∗ nodes and m∗ links. We do this
because any neuronwith fewer than two links is not participat-
ing in any synchronised group at the specified threshold.

4. For simplicity, we proceed only if (a) n∗ > 5, so that multiple
groups are possible (given that each group is at least 3 neurons),
and (b)m∗ > ln(n∗) so that the graph should have a single giant
component (Watts & Strogatz, 1998), that is, most nodes should
be reachable from any other node along the links. These con-
ditions could be relaxed in more complex uses of the current
algorithm.

5. If we proceed, thenwe run a graphmodularity algorithm (New-
man, 2006a, 2006b) onA∗ (see Appendix). Thismethod does not
require prior specification of the number of groups, and is hence
more suitable for exploratory data analysis than the family of
k-means clustering methods or classic graph-partitioning algo-
rithms. The result is a vector of length n∗, with the ith entry an
integer 1 . . .M identifying the membership of node i in the M
identified groups.

4.1. Identifying structure in the dynamics of the cell groups

The above method results in a set of M groups for each com-
bination of tested binsize δt and threshold θ , for each model that
we simulate. Given this potentially vast data-set, how do we sum-
marise the outcome of that combination, and identify which com-
binations have sufficiently rich dynamics to analyse further? Our
present search is for basic computational elements that could be
formed by antagonistic striatal cell assemblies. We thus seek a
scalar metric β that encapsulates our current criteria: maximising
the number of groups M found; maximising the number of neu-
rons contributing to groups, so that the ratio n∗/N → 1; and clear
evidence for both synchronisation and anti-correlation within the
correlation matrix.
For the latter, consider a particular choice of (δt, θ) and the re-

sulting correlation matrix C. Let h̃ be the median non-zero Ham-
ming distance for C, h∗ be the minimum non-zero Hamming
distance for C, and∆ = h̃−h∗. The greater∆, the greater the likely
existence of both strongly correlated and anti-correlated neurons.
Thus, we express our full set of criteria as

β = M
n∗

N
∆. (19)

5. Results

We now have the necessary tools – models of anatomy, neu-
rons, and input, and suitable analysis methods – to begin address-
ing the problem of identifying the computational elements of the
striatum. We use in this paper a small striatal region of 250 µm3,
which gives us 1400 neurons, 1359 MSNs and 41 FSIs. This made
a thorough analysis of both the network itself and all its outputs
computationally tractable, and we keep this size throughout for
consistency.We randomly split theMSNs into two equal sized pop-
ulations, and assigned one set as the D1 MSNs and the other as the
D2 MSNs. The resulting network was used as the basis for every
simulation detailed below.
As noted above, we here assess the spontaneous dynamics of

the network, simulating spontaneously firing cortical input. Ev-
ery simulation was run for 10 s of network time, and every MSN
data-set analysed with the cell group detection algorithm de-
tailed above, using the set of binsizes δt ∈ {20, 40, 60, 80, 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000} ms. For all simula-
tions, we set θ = 0.2 as this was a conservative threshold for
identifying potential structure. For some simulations, we use this
threshold to identify a particular time-scale of interest, as defined
by the δt that maximises (19), and re-analyse the corresponding
correlation matrix C for a range of θ to pick out the detailed dy-
namical structure.

5.1. Spontaneous clusters of synchronised MSNs emerge without
dopamine

Spontaneously formed striatal cell assemblies were observed
using calcium imaging by Carrillo-Reid et al. (2008), from an in
vitro preparation that was excited by bath application of an NMDA
agonist. To see if we could observe equivalent dynamics in our
model, we began with a model without dopamine, setting φ1 =
φ2 = 0, so that the model was close to this in vitro state.
We found that this basic model indeed supported multiple

groups of synchronised cells. Fig. 4 shows that our algorithm found
groups at many time-scales, with a unique maximum in both the
number of groups and β at δt = 800ms. The majority of the MSNs
were retained by the algorithmwhen groups were detected (range
1286–1354).
We took the correlation matrix C for δt = 800 ms and re-ran

the cluster detection algorithm with a range of θ ∈ {0.05, 0.1,
0.15, 0.2, 0.25, 0.3}, to look in more detail at the dynamical
structure. Both thresholds of θ = 0.1 and θ = 0.15 maximised
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Fig. 5. Synchronised MSN clusters at long time-scales in the absence of dopamine. (a) Unsorted raster plot for all MSNs retained for grouping by algorithm — spike trains
are arranged in rows, each dot signifies the occurrence of a spike, and each train is shown for the full 10 s. (b) Raster plot of the same set of MSNs, sorted by groups detected
by our algorithm — it found 6 groups with θ = 0.1. All the spike trains belonging to each group are colour coded either black or grey, alternating by group. (c) Histograms
of the proportion of active cells in each group for each time bin, illustrating the different structure of the dynamics in each group. Note, for example, the comparatively high
firing rate of MSNs in group 1 (groups are numbered top-down). The total of 1328 MSNs were divided into groups sized: 174, 126, 88, 129, 659 and 152.
a b c

Fig. 6. Increasing dopamine level reduced dynamical structure in the MSN output. (a) The relationship between correlation bin-size δt andmetric β for all tested dopamine
levels. (b) Bothmaximumβ (•) and corresponding time-scale δt (N) thatmaximisedβ decreasedwith increasing dopamine. (c) Raster plot for allMSNs grouped for dopamine
level φ = 0.1 at the threshold (θ = 0.2) that maximised β . No synchronised cell group dynamics are evident. Nonetheless, the grouping algorithm does find neurons with
common properties: groups 1 and 2 are split by firing rate, group 3 clustered by the brief silence at the start (groups are numbered top-down). The total of 1333 MSNs were
divided into groups sized: 246, 907, 180.
the number of groups and β , producing an identical set of 6 groups
(Fig. 4b).
Fig. 5 shows the striatal cell assemblies so identified. We see

that, faced with the initial set of 1328 MSNs that contributed to
graph A∗, the algorithm could successfully find cell assemblies of
different types and strength. Groups 2–4 and 6 each had at least
two long (>500 ms) periods of near-silence, but at different times
for each group, andwith different strengths of correlation between
the individual spike trains— compare, for example, the twoperiods
of near-silence for group 6 with the noisier but clearly identifiable
periods for group 2 later in the simulation. By contrast, groups 1
and 5 are distinguished from the others by not having multiple
synchronised periods, but are clearly distinguishable from each
other on the basis of the different firing rates of their constituent
neurons, and the initial period of silence shared by neurons in
group 1.
5.2. Increasing dopamine concentration simplifies spontaneous dy-
namics

We proceeded to study the changes in the model’s dynamics
under changes in dopamine concentration, to search for potential
correlates of known dopamine-related effects on MSN dynamics
and, in turn, the striatum’s role inmotor control (see Introduction).
We tested five levels of dopamine with equal activation applied to
both D1 and D2 receptors, giving the set φ1, φ2 = φ ∈ {0.05, 0.1,
0.2, 0.5, 0.8}.
We found that increasing dopamine simplified the dynamical

structure of the MSN output, as determined by our algorithm and
metric β . Fig. 6a shows that increasing dopamine generally in-
creased the left-shift and decreased the height of the curve relating
correlation binsize δt to themetricβ . Indeed, Fig. 6b shows that the
maximum β found at any time-scale reduced monotonically with
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Fig. 7. Effect of dopamine level on population firing statistics. (a) BothMSN (•) and
FSI (black ©) populations had linear changes in median firing rate with increasing
dopamine. Removing the FSI gap junctions reduced their median firing rate, but
reversed the effect of changing dopamine levels (grey©). (b) Increasing dopamine
monotonically decreased the MSN population’s median inter-spike interval (ISI)
coefficient of variation (CV), but had no effect on the FSIs’ median ISI CV. The model
thus predicts increased regularity of MSN spike trains under constant elevated
dopamine levels and background synaptic barrage. (c) The FSIs showed no evidence
of network-wide synchrony, for any level of dopamine. The distributions of pair-
wise correlation coefficients for all active FSIs are shown for φ = 0 (solid),
φ = 0.1 (dashed), and φ = 0.8 (dotted): network synchrony would be evident
as a positively-biased asymmetric distribution. (Pair-wise correlation coefficients
computed using spike trains binned at 1/min{mean spikes/s,median spikes/s}, so
that the bins matched the firing rates for that dopamine level. Hence, we looked for
spike-to-spike correlations on the rough time-scale of the inter-spike interval.)

increasing dopamine. The time-scale δt at which this maximum β
occurred also decreased with increasing dopamine.
The loss of synchronised cell groups was apparent even at low

dopamine levels. For φ = 0.1 maximum β was found for δt =
400 ms. When we evaluated the grouping algorithm for a range of
θ as before,we found that θ = 0.2maximisedβ . For this threshold,
only 3 groups were found. Fig. 6c shows the lack of synchronised
cell group dynamics in the raster plots for all MSNs in these
groups, emphasising the dramatic simplification of the structure.
Nonetheless, the neurons grouped by the algorithm did share
common properties: groups 1 and 2 were divided by firing rate
(median rates 3.5 and 1.4 spikes/s, respectively), and group 3 were
clustered by the period of silence at the start of the simulation.
This grouping by firing rate continued at higher levels of

dopamine. For φ = 0.5, 0.8 only 2 groups were found, clearly sep-
arated bymedian firing rates, and the time-scale δt thatmaximised
β for both these levels approximately coincided with the average
MSN firing rate across the whole network.
We found that the firing rate characteristics of our striatal

model were commensurate with experimental data on in vivo
activity under baseline conditions. The background (tonic) state
of striatal dopamine we expect to be between 0.05 and 0.2
in our model, as the tonic concentration can be up to an
order of magnitude lower than the concentration during phasic
release (Gonon, 1997; Venton et al., 2003), represented by the
upper limit of our normalised dopamine parameters φ1, φ2.
In this approximate tonic dopamine range, Fig. 7 shows the
firing statistics are consistent with known properties of striatal
cells. That is, MSNs are relatively quiet, while some FSIs fire
strongly (Mallet et al., 2005; Sandstrom & Rebec, 2003). Fig. 7 also
shows that our model predicts a linear change in the firing rates
of both neuron types with increasing dopamine. By contrast, MSNs
showed a monotonic decrease, and FSIs no change, in the median
inter-spike interval coefficient of variation (ISI CV) with increasing
dopamine. That is, the MSN spike trains became increasingly
regular, but there was no global change in FSI spike patterning
despite their decrease in firing rate.
The FSI firing statistics showed two striking properties. First,

the decrease in FSI firing rate with increased dopamine levels runs
counter to the effect of dopamine on the single neuron model
(Eqs. (12) and (15)). We attribute this to the action of the gap
junctions: without them, the FSI median firing rate increases
with increasing dopamine (Fig. 7a). Second, previous studies
have reported spike-to-spike synchrony in model fast-spiking
interneuron networks coupled by both synaptic contacts and
gap junctions (Traub et al., 2001). However, despite similar
connectivity, we see no network-wide synchrony between our
FSIs, irrespective of the level of dopamine (Fig. 7c). Our results are
nonetheless consistent with the reported uncorrelated behaviour
of striatal FSIs in vivo (Berke, 2008).

5.3. Dissecting the network: Contribution of microcircuit elements

To begin the task of understanding how the GABAergic striatal
microcircuit produces these dynamics,we look at the contributions
of the two elements that have dominated recent discussions (Tep-
per et al., 2004): ‘‘weak’’ feedback inhibition by the local MSN col-
laterals, and ‘‘strong’’ feedforward inhibition of MSNs by the FSIs.

5.3.1. An MSN-only network shows cell assembly sequencing
We first created an MSN-only network by removing all FSI

connections, and repeated the simulations at all previously tested
levels of dopamine. Fig. 8 shows that, compared to the full
model, the MSN-only network could produce spike train dynamics
of greater complexity (as measured by β), and did not have
a monotonic relationship between dopamine level and β . By
comparing the spike trains rasters in Fig. 8b and c we can see that
the metric β captures the visual impression of greater complexity
in the structure of the neural dynamics.
With dopamine absent or at low levels, the grouped rasters also

clearly show the presence of multiple groups that fire in patterns
of silence and high activity. Their absence in the intact model
clearly suggests that the FSIs desynchronise theMSN network. The
ordering of these patterns is also suggestive of inhibition-based
competition between a few of these groups, particularly in the
absence of dopamine (Fig. 8b).With a low level of dopamine, Fig. 8c
clearly shows a sequence of silent periods involving all 9 groups
identified by our analysis method, with some groups showing
further alternating periods of silence and activity.
To quantify these interactions at the scale of whole groups,

for every group we compute a vector of the proportion of
active neurons per time-bin (as in Fig. 5c). When we compute
the correlation coefficient between all vectors, we see in Fig. 9
multiple negative correlations between cell groups in the MSN-
only networks with absent or low dopamine (though we note
that these are limited to the time-scale picked by algorithm).
By contrast, the correlation coefficient distribution for the intact
model’s activity vectors is entirely positive.
The MSN-only network firing rate statistics were also distinct

from the intact model. Fig. 10a shows that, although the median
MSN firing rate did monotonically increase with increasing
dopamine, the rate was always less than that of the intact
model. We thus see a counter-intuitive attenuation of firing rate
following the removal of inhibition provided by the FSIs. The MSN
spike-trains were also roughly consistent in their irregularity (as
measured by ISI CV), independent of the level of dopamine and of
the changes in firing rate (Fig. 10b).
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Fig. 8. An MSN-only network generates a range of complex spike-train groupings, showing sequences of group firing. (a) The relationship between maximum β (•) and
increasing dopamine level is no longer monotonically decreasing, as it is for the intact model, suggesting an increased complexity of spike-train structure for intermediate
dopamine levels. However, the time-scale at whichmaximum β occurs (N) does still generally decrease with increasing dopamine. (b)With no dopamine, the grouped raster
plot showsmultiple clear groups. Groups 1 and 3 in particular have roughly anti-correlated sequences of silence and activity, suggestive of competition between them. (c) At
low levels of dopamine (here φ1, φ2 = 0.1), we see more groups at a wider range of sizes, with more complex dynamics: we have ordered the 9 groups to show a sequence
of silent periods occurring across them all. Note that this is only one of many possible orderings — group 8, for example, is silent at the beginning of the simulation, just like
group 1; groups 4 and 5 are simultaneously silent for approximately the same length of time, but only group 4 has a further period of complete silence. Groups in (b) and (c)
shown for the threshold that maximised β (both θ = 0.1), as before; groups numbered top-down.
Fig. 9. Detected cell assemblies show alternating firing sequences in MSN-only
networks. We computed correlation coefficients between the activity vectors of
every pair of cell groups. The empirical cumulative distributions of these for
the MSN-only networks show a range of negative correlations between groups;
showing φ = 0 (black solid line) and φ = 0.1 (grey solid line). By contrast, the
distribution for the intact model with φ = 0 (black dashed line) had no negative
correlations, indicating the absence of distinct sequences of firing, and hence no
evidence for competitive interactions between groups — activity vectors for this
model are shown in Fig. 5c.

5.3.2. The FSI network dominates the MSN network
We removed all local MSN collaterals from the full network

to assess the impact of the FSI feed-forward inhibition. Fig. 11
shows that, similar to the full model, both maximum β and
corresponding time-scale generally decreased with increasing
dopamine. Without dopamine, Fig. 11b shows that 5 groups in
all were detected, similar in distribution of size and dynamics
to the full model in Fig. 5b. The notably greater β at low levels
of dopamine, compared to the full model, corresponds to the
detection of more groups that could be distinguished by firing
rate, as shown in Fig. 11c. Yet, similar to the full model, there
was a loss of within-group structure in the presence of dopamine.
Comparing the groupings in Fig. 11 to those of the MSN-only
model in Fig. 8 and the intact model in Fig. 6, both emphasises
the previous conclusion that the FSIs desynchronise the MSN-only
network, and shows that they dominant the dynamics of the intact
model.

5.3.3. Relating dynamics to network structure
Having found a wide variety of complexity in the spike-trains

from our various models, we sought to relate the striatal network
structure to the dynamic cell assemblies and the relationships
a b

Fig. 10. Effect of dopamine level on MSN population firing statistics in the MSN-
only network. (a) The MSN-only network firing rate (•) increased with increasing
dopamine, but the median rate was always lower than for the intact model (©).
We infer that inhibitory input from FSIs has a facilitatory effect on MSN activity.
(b) In a further departure from the intactmodel, theMSN-only network did not have
a monotonic relationship between dopamine and the median ISI CV: rather, the
spike trains seemed consistently irregular, independent of the firing rate changes.

between them. We focussed on the output from the MSN-only
model with no and low dopamine (φ1 = φ2 = 0.1), shown in
Fig. 8b–c, as these were both using the simplest network and had
the clearest set of discrete cell assemblies.
Standard graph metrics (Humphries & Gurney, 2008; Watts

& Strogatz, 1998) were computed for the whole MSN network,
each network formed by the neurons within a dynamic group,
and each network formed between a pair of groups. These met-
rics were: the mean shortest path length L between each pair
of neurons in the network; the clustering coefficients Cws (the
mean density of interconnections between all immediate neigh-
bours of each neurons) and C∆ (the number of closed 3-neuron
feed-forward loops in the network); and the small-world-ness co-
efficients Sws, S∆ (Humphries & Gurney, 2008), corresponding to
the two forms of clustering coefficient. Sws, S∆ > 1 implies that
the network is tending to a small-world regime of short path length
but high clustering.We attempted to relate these to the cell assem-
blies and their sequencing, using the values for the whole network
as baselines for comparison.
The MSN-only network formed a classic random graph, rather

than a small-world, with small-world-ness values of Sws, S∆ '
0.87. The mean path length was L = 1.92 (maximum path length
3), and clustering coefficients were Cws = 0.092 and C∆ =
0.093. All MSNs were reachable from all others on the network,
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Fig. 11. Feed-forward inhibition from the FSIs dominates and desynchronises the MSN network. (a) Increasing dopamine generally decreased both maximum β (•) and the
corresponding time-scale atwhich it occurred (N), similar to the fullmodel. However, the values ofβ at lowdopamine levelswere larger, reflecting the presence ofmore spike
train groups that could be distinguished by firing rates. (b) Without dopamine, the grouped raster shows 5 groups, similar in distribution of size and within-group dynamics
to the full model. (c) The introduction of a low level of dopamine (here φ1, φ2 = 0.1) does not cause the same drop-off in β as it did for the full model, corresponding to the
presence of more spike-train groups that could be distinguished by firing rate. Nonetheless, the within-group structure to the dynamics has disappeared in the presence of
dopamine. Groups in (b) and (c) shown for the threshold that maximised β (b, θ = 0.1; c, θ = 0.2); groups numbered top-down.
and so no dynamic group was defined by its physical isolation
from the network. We also used the modularity-based graph-
cutting method (see Appendix) directly on the graph formed by
the connections in the MSN-only network: this gave just 2 groups
of approximately equal size, showing that the groups found in the
dynamics were not related to equivalent groups in the physical
network.
We hypothesised that each dynamic group was formed by

neurons with fewer local collaterals between them, and so were
less able to inhibit each other, as indicated by either or both of
(a) a longer path length and (b) lower clustering within the net-
work formed by those neurons. However, the networks formed
by each dynamic group could not be distinguished by their graph
metrics: path lengths and clustering coefficients did not system-
atically depart from those for the whole network, and the small-
world-ness coefficients fell in the range expected for such small
networks. We also found no difference in path lengths, in either
direction, between all pairs of groups with negatively correlated
activity vectors. Thus, we could not relate the seemingly antago-
nistic arrangement of cell firing to corresponding arrangements of
local collateral inhibition, though we note further work is needed
here to more precisely define the sequence of firing groups.
Finally, we found that the groups were not defined by their

physical positions within the 250 µm3 region of the simulated
striatum. All groups had approximately the same median distance
from the centre of the region, and all had approximately the same
distributions of distances as well. Thus, no group was seemingly
defined by edge effects on the network.

6. Discussion

To study the striatal GABAergic microcircuit, we have brought
together for the first time a detailed model of striatal anatomy,
models of its main neurons, their modulation by dopamine,
and connection by gap junctions, and models of cortical input.
Further, we proposed a new algorithm for finding structure in
the multiple spike train data-sets resulting from the striatum
model. We used this method to gain a unique insight into the
computations of the microcircuit, and identify potential ‘‘basic
computational elements’’ for further study. These techniques have
general application to the study of microcircuits.

6.1. Detecting structure in multiple spike-trains

Our goal was to find co-active and antagonistic MSNs within
the striatum. Naturally, this meant facing the problem of
identifying meaningful groups from many hundreds or thousands
of simultaneously recorded neurons. Such problems are at the
cutting-edge of current neuroscience research. Recent multi-
electrode experimental techniques (Buzsaki, 2004; Miller &
Wilson, 2008) and calcium imaging (Carrillo-Reid et al., 2008)
are already identifying hundreds of neurons, and there is a clear
need for suitable multi-unit methods (Brown et al., 2004), as their
absence places a fundamental limit on the use of such large-scale
data.
Our graph-cut algorithm, based on aHamming distance correla-

tion metric, is an excellent candidate method for such exploratory
analyses, as it does not require the user to pre-suppose the size
or number of the neuron groups within the data. We have shown
here that the algorithmcan successfully find awide range of groups
that differ in number, size, discreteness of firing, and time-scale of
activation. Extending this approach to determine neurons shared
between more than one cell assembly (Carrillo-Reid et al., 2008),
and to improve detection of groupings at multiple time-scales is
the subject of ongoing work.

6.2. Microcircuit dynamics

We found no evidence for strongly synchronised neuron groups
or for competitive dynamics between groups, under conditions
we considered to best approximate an in vivo state with tonic
dopamine. Of course, we cannot rule out the possibility that such
competing neurons groups are on the scale of the size of this
network, but then only a few such groups could be sustained in the
striatum as a whole. Certainly, such a group would be much larger
than that proposed in the ‘‘domain’’ theory (Wickens et al., 1991).
Having prototyped all the appropriate methods here, we can now
use larger scale networks and search for the existence of larger cell
assemblies.
Without dopamine, noisy but synchronised groups of MSNs

were observed. This is consistent with the increased synchrony
of rat MSNs recorded under anaesthetic following dopamine
depletion (Tseng, Kasanetz, Kargieman, Riquelme, & Murer, 2001).
Moreover, it provides an explanation for the perplexing finding
that dopamine-depletion causes a fragmentation of striatal cell
clusters corresponding to sensorimotor stimulation of particular
body parts (Cho, Duke, Manzino, Sonsalla, & West, 2002). Our
model clearly suggests that such fragmentation of striatal cells
into smaller groups after dopamine loss occurs as a natural
consequence of the microcircuit’s dynamics.
Taken together, observations of the model with and without

dopamine suggest that the dominance of asynchronous firing
with dopamine is beneficial: then the response to subsequent
structured input would not be corrupted by ongoing synchronised
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dynamics in the striatum, whereas part of the effect of dopamine-
loss is to hinder striatal computations by having small groups that
respond incorrectly to structured input.

6.3. Dissection of the network

TheMSN-only, dopamine-free network showed the clearest set
of cell groups that were consistent with some form of competitive
dynamicwithin the striatal network.With low-levels of dopamine,
the same network showed a structured sequence of silent periods
across all groups. These results show why MSN-only, dopamine-
free models could mislead theories on striatal function into
focussing on competition within it.
The MSN-only network also provided evidence that the FSIs

have a counter-intuitive facilitatory effect on MSN firing. This is
consistent with experimental evidence for an excitatory effect
of GABAergic input to MSNs (Bracci & Panzeri, 2006), but goes
beyond this by showing a detectable affect on firing rate. In the
model, we see that this is simply due to the disparity between the
reversal potential for chloride and the nominal resting potential of
the MSN. GABAergic input acts to drive the membrane potential
toward this reversal potential; yet the MSN’s isolated resting
potential is around−80 to−90 mV, due to an inwardly-rectifying
potassium current. From this starting point, GABAergic input to
the MSN can depolarise the neuron, and could make it easier
to fire, not less. However, the facilitatory effect must depend on
a balance of glutamatergic and GABAergic input: an excess of
GABAergic input would simply clamp the membrane potential to
the reversal potential for chloride. Our model shows that, beyond
just a depolarising effect (Plenz, 2003), realistically parameterised
GABAergic input to the MSNs can produce detectable changes in
firing rate.
TheMSN-collateral lesionedmodels revealed that the compara-

tively simple, noisy structure of the full model’s spike train groups
was seemingly dominated by the FSI input, supporting views that
the sparse FSIs play a major role in the striatum (Tepper et al.,
2004). They appeared to obscure or desynchronise the groups
formed by the MSN-only network. This points to a different hy-
pothesis for the ‘‘basic computational element’’ of the striatum:
that the local MSN collaterals can support competitive dynamics
within the striatum, but only when the damping influence of the
GABAergic FSIs is removed. A possible mechanism for this is pro-
vided by the GABAergic control of FSIs by the globus pallidus (Be-
van, Booth, Eaton, & Bolam, 1998). In this picture, a small region of
the striatum would support local competition following enhanced
pallidal inhibition of a group of GABAergic interneurons. Firmer
conclusions here require gathering of better data on striatal FSIs
in particular.
The complex behaviour of the model FSI network emphasises

the need for more data. We saw an unintuitive effect of gap
junctions. Their presence caused the FSI population firing rate
to fall with increasing dopamine, despite dopamine having an
excitatory effect on the individual neuron. Removing the gap
junctions reversed this trend. However, it also caused a large
overall fall in population firing rate due to the homogenisation of
the firing patterns. With gap junctions, we typically saw the firing
rates spread over 100 spikes/s or more with peaks at both very
low and high ends of this range; without them, the firing rates
were within 3 spikes/s of each other. Presumably the FSI network
transitions between multiple states between these two extremes,
dependent on gap junction strength. A particularly interesting
avenue for future work is the potential for this strength to be
controlled dynamically by the nitric oxide releasing interneurons
in the striatum (O’Donnell & Grace, 1997).
Further interesting extensions include the other omitted in-

terneuron class (cholinergic) and the effects of GABAb receptors.
The sustained activity of the FSIs could raise the extra-synaptic
GABA concentration sufficiently to activate extra-synaptic GABAb
receptors by volume transmission. In the striatum these are pre-
dominantly located on axon terminals (Galvan, Kuwajima, & Smith,
2006). Their activation by baclofen attenuates both excitatory and
inhibitory post-synaptic potentials in MSNs (Nisenbaum, Berger, &
Grace, 1993). This suggests they are located on both glutamatergic
terminals, decoupling the MSNs from their input, and on GABAer-
gic terminals, self-regulating inhibition throughout the striatum.
A thorough study awaits the incorporation of three-dimensional
volume transmission models into the striatal microcircuit studied
here.

6.4. Conclusions

We have found some tantalising hints about the nature of
the computations within the striatal microcircuit, and their rela-
tionship to dopamine-depleted disease states. The cell assemblies
found here under a variety of conditions can now form the ba-
sis for a focussed study of the striatum’s dynamics under struc-
tured input: its responses to slow-wave cortical activity under
anaesthetic (Tseng et al., 2001), broad-scale synchrony during free
behaviour (Berke, Okatan, Skurski, & Eichenbaum, 2004), and its re-
organisation during learning (Tang, Pawlak, Prokopenko, & West,
2007). More generally, in developing our model we have assem-
bled an armoury of tools applicable to the study of neuronal mi-
crocircuits.
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Appendix. Specification for the spike-train clustering algo-
rithm

We specify here the choices of correlation method and graph-
modularity algorithm for use in our general algorithm for analysing
multi-unit data (Section 4).

A.1. Choice of correlation method: Hamming distance

There is a wide choice of correlation methods for spike train
pairs, but few fulfill the multiple criteria we require: reducible to a
scalar value, and suitable for repeated, exhaustive computation of
all pairs at multiple time-scales. We propose here a novel (to the
best of our knowledge) metric that fulfills these criteria. For each
spike train, we divide time into bins of width δt , and in each bin
record a 1 for the presence of any spikes, and a 0 for the absence.
The resulting binary vector of length q thus records when the
neuron is active or not. For each pair of binary vectors, we compute
the normalised Hamming distance h, which is just the proportion
of bins that differ between the two vectors: the smaller h, the closer
the two vectors, and thus the more synchronised the two neurons
at time-scale δt . Therefore we use Cij = Cji = h to construct the
correlation matrix.
This encoding and correlation method has two advantages for

us. By not encoding the magnitude of activity we do not confound
the co-activity of two neurons with scalar measurements of their
respective magnitudes. More importantly, using the Hamming
distance places equal weight on co-active and co-silence periods.
This allows us to find neurons that are co-active, rather than the
more limited set that are co-active at similar rates. Of course,
in other applications of the general algorithm, a more detailed
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exploration of a smaller subset might be desirable: then the
correlationmatrix could be constructed by counting spikes in each
bin and applying a continuous metric, such as the correlation
coefficient.

A.2. Choice of grouping method: Graph ‘‘modularity’’

Standard data clustering techniques, such as k-means and its
various extensions, can be used to find clusters within the matrix
A∗ or directly on the correlation matrix C, but these are limited by
the need for the user to define the number of clusters in advance.
Similarly, standard graph partitioning algorithms applied to A∗
require prior specification of the size of the resulting partitioned
groups (Newman, 2006a). They are thus difficult to use for the
kind of exploratory data analysis required here. We propose here
a novel use of a new graph-partitioning method that circumvents
this problem by not requiring prior specification of the number of
groups. We can provide only an outline of this method here – the
reader is referred to Newman (2006a, 2006b) for details.
The general problem of dividing networks into clusters has

generated many techniques in network theory, generally under
the label of ‘‘community detection’’. Central to many of them is an
attempt to maximise a benefit function

Q = [number of edges in a community]
− [expected number of such edges], (20)

often called ‘‘modularity’’, over all possible subdivisions of the
graph describing the network. That is, the division that maximises
Q creates the clearest division of the graph into two sets,withmore
connections within them, but fewer connections between them,
than expected. Key here is quantification of the ‘‘expected number
of edges’’, which is encapsulated in the null model graph P. We can
define Q in matrix notation as

Q = sTBs, (21)

where s is a vector denoting the group membership of each node
(defined in (24)), and B is the ‘‘modularity’’ matrix whose entries

Bij = Aij − Pij (22)

denote the difference between the number of links Aij connecting
nodes i and j (allowing for graphs with multiple links between
nodes), and the expected number of links Pij. Following Newman
(2006a), we use here the null model

Pij =
kikj
2m

, (23)

where m is the number of unique links in the original graph
(here m∗), and ki, kj are the degrees of (number of links made by)
nodes i and j. This null model is closely related to the so-called
‘‘configuration’’ model: it essentially forms a random graph with
the same expected degree sequence as the graph being analysed.
Ifwe compute the eigenvaluesβi and the eigenvectorsui ofB for

all n nodes, and order the eigenvalues so that β1 ≥ β2 ≥ · · · ≥ βn,
then it turns out that we can use the leading eigenvector u1 to
partition the nodes into two groups:

si =
{
1 if ui(1) ≥ 0
−1 if ui(1) < 0.

(24)

We can then use the resulting vector s to compute modularity Q
from (21): if Q is positive, we retain the split; if it is negative,
we do not split. We need only do this once, as the sum in (21) is
maximised by the choice of (24).
To find more than two groups, we repeat the process on each

subgraph defined by the nodes in a group. As each subgraph is
smaller than the original graph, a correction is applied to (22) to
account for the smaller number of nodes and edges

B(g)ij = Aij − Pij − δij

[
k(g)i − ki

dg
2m

]
, (25)

where δij is the Dirac delta functions, k
(g)
i is the degree of the ith

node in subgraph g , and dg is the sum of all total degrees ki (from
the original graph) for the nodes in the subgraph. Then we replace
B ← B(g) in (21), and repeat the computation of eigenvalues and
eigenvectors. The subgraph is then split according to vector s, if
Q > 0, as before. This procedure is iterated for all subgraphs until
no split yields Q > 0: then we have reached a state where no
subgraph can increase its modularity by dividing further.
In our application of this method, the outcome is a set of node

groups, corresponding to all found subgraphs. Each subgraph in
turn corresponds to a set of neurons with a sufficiently strong
correlation between them to fulfill the definition of modularity
(20).
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