Supplemental Methods

Mathematical model of the “bursting” spontaneous activity

We employed a minimal “rate model” (Dayan & Abbott, 2001; Amit & Tsodyks,
1991; Wilson & Cowan, 1972) to describe the mean firing rate of a homogenous
neuronal population, recurrently connected by short-term depressing synapses and
including neuronal spike-frequency adaptation. Recurrent excitation (i.e. a positive
feedback) determines the tendency of the network to ignite epochs of sustained firing,
while intrinsic or synaptic refractoryness (i.e. a delayed negative feedback) terminate
these epochs and determine the irregular “bursting” behavior (see Giugliano et al.,
2004 for a discussion).

The collective firing rate R of an ensemble of cultured neurons can be inferred
from the knowledge of the single-cell stationary frequency-current response function
R = ®(m,, s¢), extended to account for the response to input fluctuations and
identified experimentally in Giugliano et al. (2004). As reviewed in La Camera et al.
(2008), m, and s,” approximately represent the time-varying mean and variance of the
overall input synaptic current /; to a generic unit of the network (Amit & Brunel,
1997). Although it neglects a precise biophysical account of neuronal excitability,
such a description was shown to hold even in dynamical regimes (Kondgen et al.,
2008; La Camera et al., 2004; see Giugliano et al. 2008 for a review). I, results from
presynaptic spiking activity, constituted of individual postsynaptic currents with an
instantaneous rise time and exponential decay, mathematically described as g, exp(- ¢
/ 1) for t > 0, where g, is the peak postsynaptic current.

In the diffusion approximation (Lansky & Sato, 1999), I, is equivalent to a
continuous random walk with gaussian amplitude and correlation-length 7,. Then,
mean m, and variance s,° of such a stochastic process evolve according to a first-order
dynamics, T.dm, /dt = -my + my, analogously for s,” replacing . by 7, / 2 (Gardiner,
1985).

The steady-state values my and sy arise from the statistics of the presynaptic
activity and account for both external m, S. (background) inputs and recurrent
synaptic contributions (Amit & Brunel, 1997; Rauch et al., 2003): my=g. NCR 7, +
Moy and s02 = gxz NCRrz /2+ sz . In this context, m,,, and s.,, refers to spontaneous

synaptic release and other sources of cellular randomness (see Giugliano et al., 2004
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and references therein). N and C indicate the number of neurons constituting the
network and their probability of pair-wise (random) connectivity, respectively. The
impact of single-cell spike-frequency adaptation was introduced as in La Camera et
al. (2004), R = ®(my - L, sxz), with I,,, being an activity-dependent after-
hyperpolarizing current that evolves in time as Ty, dluy / dt = Ly, + a R. A similar
model was studied in Giugliano et al., (2004), similarly assuming 7, to fluctuate
slowly compared to I, and therefore mainly contributing to m, and not to s,° (La
Camera et al., 2004). Short-term synaptic depression and facilitation (Markram et al.,
1999) were also introduced in the model. Similarly to /,,, short-term plasticities were
dominated by slow fluctuations and approximated by their mean-field description
(Tsodyks et al., 1998). g, was therefore a function of both time and presynaptic
activity R, as g = gpu x /U, with dx/dt = (1 —x) /D —ux R and du/dt = (U—-u) / F +
U(l-u)R.

Finally, finite-size effects have been introduced by replacing R with R + n (R /
N)*°, where N is the size of the network and 1 a sequence of normally-distributed
pseudo-random numbers with unitary variance. This introduces coherent random
fluctuations in the network model, accounting for the divergence from the theoretical
(mean-field) approximation that strictly holds in the limit of a infinitely large
networks (Mattia & Del Giudice, 2002; see also Holcman & Tsodyks, 2006).

Summarizing, the model is constituted of five ordinary differential equations

(S.2,S.3, 8.5, S.8 and S.9), and fully described as:

R=®(m, - Ly, 5°) ; R->R+n®R/N"™ (S.1)
Tunp Alapy/ dt = Ly, + @ R (S8.2)
T . dm, /dt = -my + my (S8.3)
myp =gy NCR T + Mgy (S.4)
0.5 Todsy’ /dt = - s° + s¢° (S.5)
s =g’ NCR T/ 2+ Sexi® (S.6)
& =gux/U (S.7)
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dx/dt =(1-x)/D—-uxR (S.8)
dudt=(U-u)/F+U(l—-u)R (S.9)

The profile of ®( ) was chosen as in Giugliano et al. (2004) — parameters of Table
1. We considered the rate-model (egs. S.1-S.9) to account for the electrical activity in
a small network, composed of 100 neurons (i.e. N = 100) randomly connected with a
probability of 25% — 56% (i.e. C = 0.25 — 0.56). Synapses were short-term depressing
(i.e. recovery from depression D = 255 ms, instantaneous recover from facilitation F =
1 ms) with an effective probability of release in the range 10% — 100% (i.e. U= 0.1 —
1). The remaining parameters were chosen as a = 6.23 pA s, T, = 700 ms, T, =10

ms, and gy in the range 5 — 20 pA.
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