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Supplemental Methods 
 

Mathematical model of the “bursting” spontaneous activity  

We employed a minimal “rate model” (Dayan & Abbott, 2001; Amit & Tsodyks, 

1991; Wilson & Cowan, 1972) to describe the mean firing rate of a homogenous 

neuronal population, recurrently connected by short-term depressing synapses and 

including neuronal spike-frequency adaptation. Recurrent excitation (i.e. a positive 

feedback) determines the tendency of the network to ignite epochs of sustained firing, 

while intrinsic or synaptic refractoryness (i.e. a delayed negative feedback) terminate 

these epochs and determine the irregular “bursting” behavior (see Giugliano et al., 

2004 for a discussion). 

The collective firing rate R of an ensemble of cultured neurons can be inferred 

from the knowledge of the single-cell stationary frequency-current response function 

R = Φ(mx, sx
2), extended to account for the response to input fluctuations and 

identified experimentally in Giugliano et al. (2004). As reviewed in La Camera et al. 

(2008), mx and sx
2 approximately represent the time-varying mean and variance of the 

overall input synaptic current Ix to a generic unit of the network (Amit & Brunel, 

1997). Although it neglects a precise biophysical account of neuronal excitability, 

such a description was shown to hold even in dynamical regimes (Köndgen et al., 

2008; La Camera et al., 2004; see Giugliano et al. 2008 for a review). Ix results from 

presynaptic spiking activity, constituted of individual postsynaptic currents with an 

instantaneous rise time and exponential decay, mathematically described as gx exp(- t 

/ τx ) for t > 0, where gx is the peak postsynaptic current. 

In the diffusion approximation (Lánský & Sato, 1999), Ix is equivalent to a 

continuous random walk with gaussian amplitude and correlation-length τx. Then, 

mean mx and variance sx
2 of such a stochastic process evolve according to a first-order 

dynamics, τxdmx /dt = -mx + m0, analogously for sx
2 replacing τx by τx / 2 (Gardiner, 

1985). 

The steady-state values m0 and s0 arise from the statistics of the presynaptic 

activity and account for both external mext, sext (background) inputs and recurrent 

synaptic contributions (Amit & Brunel, 1997; Rauch et al., 2003):  m0 = gx N C R τx + 

mext and s0
2 = gx

2 N C R τx / 2+ sext
2. In this context, mext and sext refers to spontaneous 

synaptic release and other sources of cellular randomness (see Giugliano et al., 2004 
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and references therein). N and C indicate the number of neurons constituting the 

network and their probability of pair-wise (random) connectivity, respectively. The 

impact of single-cell spike-frequency adaptation was introduced as in La Camera et 

al. (2004), R = Φ(mx - Iahp, sx
2), with Iahp being an activity-dependent after-

hyperpolarizing current that evolves in time as τahp dIahp / dt = Iahp + α R. A similar 

model was studied in Giugliano et al., (2004), similarly assuming Iahp to fluctuate 

slowly compared to Ix and therefore mainly contributing to mx and not to sx
2 (La 

Camera et al., 2004). Short-term synaptic depression and facilitation (Markram et al., 

1999) were also introduced in the model. Similarly to Iahp, short-term plasticities were 

dominated by slow fluctuations and approximated by their mean-field description 

(Tsodyks et al., 1998). gx was therefore a function of both time and presynaptic 

activity R, as gx = g0 u x /U, with dx/dt = (1 – x) / D – u x R and du/dt = (U – u) / F + 

U (1 – u) R. 

Finally, finite-size effects have been introduced by replacing R with R + η (R / 

N)0.5, where N is the size of the network and η a sequence of normally-distributed 

pseudo-random numbers with unitary variance. This introduces coherent random 

fluctuations in the network model, accounting for the divergence from the theoretical 

(mean-field) approximation that strictly holds in the limit of a infinitely large 

networks (Mattia & Del Giudice, 2002; see also Holcman & Tsodyks, 2006). 

Summarizing, the model is constituted of five ordinary differential equations 

(S.2, S.3, S.5, S.8 and S.9), and fully described as: 

 

R = Φ(mx - Iahp, sx
2 ) ;  R  R + η (R / N)0.5    (S.1) 

 
τahp dIahp / dt = Iahp + α R       (S.2) 

 

τx dmx /dt = -mx + m0        (S.3) 

m0 = gx N C R τx + mext        (S.4) 

 

0.5 τx dsx
2 /dt = - sx

2 + s0
2        (S.5) 

s0
2 = gx

2 N C R τx / 2+ sext
2       (S.6) 

 

gx = g0 u x /U         (S.7) 
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dx/dt = (1 – x) / D – u x R        (S.8) 

du/dt = (U – u) / F + U (1 – u) R      (S.9) 

 
 

The profile of Φ( ) was chosen as in Giugliano et al. (2004) – parameters of Table 

1. We considered the rate-model (eqs. S.1-S.9) to account for the electrical activity in 

a small network, composed of 100 neurons (i.e. N = 100) randomly connected with a 

probability of 25% – 56% (i.e. C = 0.25 – 0.56). Synapses were short-term depressing 

(i.e. recovery from depression D = 255 ms, instantaneous recover from facilitation F = 

1 ms) with an effective probability of release in the range 10% – 100% (i.e. U = 0.1 – 

1). The remaining parameters were chosen as α = 6.23 pA s, τahp = 700 ms, τx =10 

ms, and g0 in the range 5 – 20 pA. 
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