Closed-Loop Model Equations

h-

To set up an averaging calculation to obtain the approximate dynamics of the control variable, $y = P_aO_2$, we write the closed-loop control ODE model in the following form:

Voltage, BRS cell.
$$\frac{dV}{dt} = f_V(V, h, n, y)$$
 (1)

gate (NaP), BRS cell.
$$\frac{dh}{dt} = f_h(V,h)$$
 (2)
 $\frac{dn}{dt} = f_h(V,h)$ (2)

n-gate (K), BRS cell.
$$\frac{dn}{dt} = f_n(V, n)$$
 (3)

Motor pool activity.
$$\frac{d\alpha}{dt} = f_{\alpha}(V, \alpha)$$
 (4)

Lung volume.
$$\frac{dL}{dt} = f_L(\alpha, L)$$
 (5)

PO₂(lung).
$$\frac{dO}{dt} = f_O(L, O, y)$$
 (6)

$$PO_2(blood). \qquad \frac{dy}{dt} = g(O, y) \tag{7}$$

For the reasons articulated in the manuscript, we perform averaging with respect to $P_{\rm a}O_2$, and consider equations (1-6) to be the "fast" subsystem and equation (7) to be the "slow" subsystem.