Stable propagation of synchronous spiking in cortical neural networks (Diesmann et al 1999)


"... Here we show that precisely synchronized action potentials can propagate within a model of cortical network activity that recapitulates many of the features of biological systems. An attractor, yielding a stable spiking precision in the (sub)millisecond range, governs the dynamics of synchronization. Our results indicate that a combinatorial neural code, based on rapid associations of groups of neurons co-ordinating their activity at the single spike level, is possible within a cortical-like network."

Model Type: Realistic Network

Region(s) or Organism(s): Neocortex

Model Concept(s): Attractor Neural Network

Simulation Environment: Brian (web link to method); Python (web link to model)

References:

Diesmann M, Gewaltig MO, Aertsen A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature. 402 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.