
Python-csa tutorial v0.2

Mikael Djurfeldt

2011-01-17

Contents

1 Purpose of this document 4

2 Introduction 5

3 Tutorial 6

3.1 Basic concepts . 6
3.2 Random connectivity . 9
3.3 The block operator . 9
3.4 Geometry . 10
3.5 A network with gaussian connectivity 12

4 Reference 13

4.1 Classes . 13
4.1.1 ConnectionSet . 13
4.1.2 Mask . 14
4.1.3 ValueSet . 14
4.1.4 IntervalSet . 14

4.2 Constructor and selectors . 14
4.2.1 cset . 14
4.2.2 mask . 15
4.2.3 value . 15
4.2.4 arity . 15
4.2.5 vset . 15

4.3 Integer sets . 15
4.3.1 ival . 16
4.3.2 N . 16
4.3.3 cross . 16

4.4 Utilities . 16
4.5 Elementary masks . 17

4.5.1 empty . 17
4.5.2 full . 17
4.5.3 oneToOne . 17
4.5.4 random . 18

4.6 Set operators . 18
4.7 Arithmetic operators . 18
4.8 Operator application . 18
4.9 Miscellaneous connection-set operators 19

4.9.1 random . 19

2

4.9.2 disc . 19
4.9.3 gaussian . 19
4.9.4 block . 20
4.9.5 block1 . 20
4.9.6 transpose . 20
4.9.7 shift . 20
4.9.8 fix . 20

4.10 Geometry . 20
4.10.1 grid2d . 20
4.10.2 random2d . 21
4.10.3 euclidMetric2d . 21
4.10.4 ProjectionOperator . 21

4.11 Plotting . 21
4.11.1 show . 21
4.11.2 gplotsel2d . 21

3

Chapter 1

Purpose of this document

This is a preliminary documentation and tutorial for the python-csa demonstra-
tion implementation in Python of the Connection-Set Algebra (Djurfeldt, 2011,
submitted)

The CSA library provides elementary connection-sets and operators for com-
bining them. It also provides an iteration interface to such connection-sets en-
abling efficient iteration over existing connections with a small memory footprint
also for very large networks. The CSA can be used as a component of neuronal
network simulators or other tools.

Section 2 introduces some basic concepts while section 3 provides some
hands-on material for getting started. Section 4 contain a preliminary refer-
ence documentation.

4

Chapter 2

Introduction

When building a neuronal network model, we often want to connect one set of
neurons—the source set—with another set—the target set. When applying the
Connection-Set Algebra (hereafter denoted CSA), we start by enumerating the
source and target sets, i.e. we assign arbitrary integer indices to the neurons
of each set. This allows us to represent a connection between source neuron
number 3 and target neuron number 17 as a pair of integers (3, 17). More
generally, the source and target sets do not need to be neurons. For example,
the target set might be a set of synaptic sites. Also, source and target sets can
be (and is often) the same set. This is the case when using CSA to describe
connectivity within a neuronal population.

• A mask contains information about which connections exist. It is a set of
(source, target) pairs, one pair for each existing connection. It can also be
regarded as a function mapping a pair of arbitrary non-negative integers
to a boolean value—true for each existing connection.

• A value-set is a function mapping each existing connection to a value,
such as a synaptic weight.

• A connection-set is a tuple of a mask and zero or more value sets.

CSA connection sets are usually infinite. This is a simplification compared
to the common situation of finite source and target sets in that the sizes of
these sets do not need to be considered. Connection sets can have arbitrary
values associated with connections. Pure connection sets without any values
associated are called masks.

5

Chapter 3

Tutorial

3.1 Basic concepts

To get access to the CSA in Python, type:

from csa import ∗

The mask representing all possible connections between an infinite source
and target set is:

full

To display a finite portion of the corresponding connectivity matrix, type:

show (full)

One-to-one connectivity (where source node 0 is connected to target node 0,
source 1 to target 1 etc) is represented by the mask oneToOne (Figure 3.1):

show (oneToOne)

Figure 3.1: oneToOne

6

Figure 3.2: full − oneToOne

Figure 3.3: [(22, 7), (8, 23)]

The default portion displayed by ”show” is (0, 29) x (0, 29). (0, 99) x (0,
99) can be displayed using:

show (oneToOne , 100 , 100)

If source and target set is the same, oneToOne describes self-connections. We
can use CSA to compute the set of connections consisting of all possible con-
nections except for self-connections using the set difference operator ”-” (Figure
3.2):

show (full − oneToOne)

Finite connection sets can be represented using either lists of connections,
with connections represented as tuples (Figure 3.3):

show ([(2 2 , 7) , (8 , 2 3)])

or using the Cartesian product of intervals (Figure 3.4):

show (cross (xrange (10) , xrange (2 0)))

7

Figure 3.4: xrange (10), xrange (20)

Figure 3.5: cross (xrange (10), xrange (10)) ∗ oneToOne

We can form a finite version of the infinite oneToOne by taking the inter-
section ”*” with a finite connection set (Figure 3.5):

c = cross (xrange (10) , xrange (10)) ∗ oneToOne

show (c)

Finite connection sets can be tabulated:

>>> tabulate (c)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

8

Figure 3.6: random (0.5)

In Python, finite connection sets provide an iterator interface:

>>> for x in cross (xrange (4) , xrange (4)) ∗ oneToOne :
. . . print x

. . .
(0 , 0)
(1 , 1)
(2 , 2)
(3 , 3)

3.2 Random connectivity

Connectivity where the existence of each possible connection is determined by
a Bernoulli trial with probability p is expressed with the random mask random
(p), e.g. (Figure 3.6):

show (random (0 . 5))

3.3 The block operator

The block operator expands each connection in the operand into a rectangular
block in the resulting connection matrix, e.g. (Figure 3.7):

show (block (5 , 3) ∗ random (0 . 5))

Note that ”*” here means operator application (see section 4.8). There is
also a quadratic version of the operator:

show (block (10) ∗ random (0 . 7))

Using intersection and set difference, we can now formulate a more complex
mask:

show (block (10) ∗ random (0 . 7) ∗ random (0 . 5) − oneToOne)

9

Figure 3.7: block (5,3) ∗ random (0.5)

Figure 3.8: block (10) ∗ random (0.7) ∗ random (0.5) − oneToOne

10

Figure 3.9: gplot2d (random2d (900), 900)

The block operator is especially useful when creating connectivity with hi-
erarchical substructure, such as a set of cortical columns.

3.4 Geometry

In CSA, the basic tool to handle distance dependent connectivity is metrics.
Metrics are value sets d (i, j). Metrics can be defined through geometry func-
tions. A geometry function maps an index to a position. We can, for example,
assign a random position in the unit square to each index:

g = random2d (900)

The positions of the grid described by g have indices from 0 to 899 and can
be displayed like this:

gplot2d (g , 900)

Alternatively, we can arrange indices in a 30 x 30 grid within the unit square:

g = grid2d (30)

We can now define the euclidean metric on this grid:

d = euclidMetric2d (g)

An example of a distance dependent connection set is the disc mask Disc (r)
* d which connects each index i to all indices j within a distance d (i, j) ¡ r:

c = disc (r) ∗ d

To examine the result we can employ the function gplotsel2d (g, c, i) which
displays the targets g (j) of i in the connection set c (Figure 3.11):

gplotsel2d (g , c , 434)

[A known bug in the current implementation makes the above expression crash.
This only happens for infinite sets like c and can be amended by intersecting it
with a finite set: cross (xrange (900), xrange (900)) ∗ c.]

11

Figure 3.10: gplot2d (grid2d (30), 900)

Figure 3.11: Projection from source neuron #434 in disc (0.3) ∗ d.

12

Figure 3.12: gplot2d (GvspaceToCx ∗ g1, 900)

In the case where the connection set represents a projection between two
different coordinate systems, we define one geometry function for each. In the
following example g1 is direction in visual space in arc minutes while g2 is
position in the cortical representation of the Macaque fovea in mm:

g1 = grid2d (30)
g2 = grid2d (30 , x0 = −7.0 , xScale = 8 .0 , yScale = 8 . 0)

We now define a projection operator which takes visual coordinates into
cortical (Dow et al. 1985):

import cmath

@ProjectionOperator

def GvspaceToCx (p) :
w = 7.7 ∗ cmath . log (complex (p [0] + 0 .33 , p [1]))
return (w . real , w . imag)

To see how the grid g1 is transformed into cortical space, we type:

gplot2d (GvspaceToCx ∗ g1 , 900)

The inverse projection is defined:

@ProjectionOperator

def GcxToVspace (p) :
c = cmath . exp (complex (p [0] , p [1]) / 7 . 7) − 0 .33
return (c . real , c . imag)

Real receptive field sizes vary with eccentricity. Assume, for now, that we
want to connect each target index to sources within a disc of constant radius.
We then need to project back into visual space and use the disc operator:

c = disc (0 . 1) ∗ euclidMetric2d (g1 , GcxToVspace ∗ g2)

Again, we use gplotsel2d to check the result (Figure 3.13):

gplotsel2d (g2 , c , 282)

13

Figure 3.13: disc (0.1) ∗ euclidMetric2d (g1, GcxToVspace ∗ g2)

14

3.5 A network with gaussian connectivity

In the following example we represent the connectivity of a network with exci-
tatory and inhibitory neurons and gaussian connectivity in a random geometry
using a single connection-set (Figure 3.14).

Example 3.1: Network with gaussian geometry-dependent connectivity

from csa import ∗

Create index i n t e r v a l s f o r e x c i t a t o r y , i n h i b i t o r y
and a l l c e l l s
e = ival (0 , 599)
i = ival (600 , 899)
a = e + i

Create geometry func t i on g and metr ic d
g = random2d (900)
d = euclidMetric2d (g)

Exc i t a t o ry and i n h i b i t o r y conductances , computed as
gauss ian va lue s e t s (p rov i de s the gauss ian o f the
d i s t ance f o r every index pa i r)
g_e = gaussian (0 . 1 , 0 . 3) ∗ d

g_i = gaussian (0 . 2 , 0 . 3) ∗ d

Create connection−s e t s wi th gauss ian dependent random
masks , gauss ian dependent conductance and d i s t ance
dependent de lay : (mask , conductance , de lay)
c_e = cset (random ∗ g_e , g_e , d)
c_i = cset (random ∗ g_i , −g_i , d)

Combine e x c i t a t o r y and i n h i b i t o r y c onn e c t i v i t y in t o one
network us ing i n t e r s e c t i o n (∗) and mu l t i s e t sum (+)
opera tor s
c = cross (e , a) ∗ c_e + cross (i , a) ∗ c_i

We may a l s o p l o t the outgo ing connect ions from one
e x c i t a t o r y neuron around coord ina te (0 .33 , 0 .5) and one
i n h i b i t o r y neuron around coord ina te (0 .67 , 0 .5)
sources = [g . inverse (0 . 3 3 , 0 . 5 , e) , g . inverse (0 . 6 7 , 0 . 5 , i)]
gplotsel2d (g , c , sources , value=0, range=[−1 ,1])

15

Figure 3.14: Projections of an excitatory (warm colors) and an inhibitory (cold
colors).

16

Chapter 4

Reference

This section documents how to use existing python-csa classes.

4.1 Classes

This section briefly documents some important classes in the python-csa imple-
mentation and their public API. The examples use many elements which are
defined in later sections. It is suggested to use the index on page 22 to find the
reference documentation for these elements.

4.1.1 ConnectionSet

A connection-set can be regarded as a set of connections, represented by their
source and target indices, with zero or more associated values. In the CSA, a
connection-set with no associated values is a mask. Thus, in the python-csa
implementation, in all cases where an instance of the class ConnectionSet is
expected, it is OK to pass an instance of Mask.

l en (self)

return value the number of connections in this connection-set

This method returns the number of connections in this connection-set. An error
is reported if this connection-set isn’t finite.

Example 4.1: Obtaining the number of connections in a connection-set

>>> len (cross ((0 , 1) , (0 , 1)))
4

i t e r (self)

return value iterator over the connections represented by this
instance

17

This method returns an iterator over the connections represented by this in-
stance. Each item generated by the iterator is a tuple

(i, j, v0, ..., vn−1)

Example 4.2: Iterating over a connection-set

>>> m = cross ((0 , 1) , (2 , 3))
>>> v = vset (lambda i , j : i + j)
>>> c = cset (m , v , v ∗ v)
>>> for x in c :
. . . print x

. . .
(0 , 2 , 2 , 4)
(1 , 2 , 3 , 9)
(0 , 3 , 3 , 9)
(1 , 3 , 4 , 16)

4.1.2 Mask

A mask gives information about which connections exist. It can be regarded
as a set of connections, represented by their source and target indices. In the
CSA, a connection-set with no associated values is a mask. In the python-csa
implementation, an attempt to construct a connection-set with zero associated
values, yields an instance of the class Mask. In cases where a mask is expected,
a python list of (source, target) tuples can also be passed.

The class Mask has the same public methods (__len__, __iter__) as the
class ConnectionSet.

4.1.3 ValueSet

To be documented.

4.1.4 IntervalSet

To be documented.

4.2 Constructor and selectors

4.2.1 cset

cset (mask , valueSet , . . .)

mask a Mask

valueSet zero or more ValueSet:s

This function constructs and returns a connection-set from a Mask and zero or
more ValueSet:s. [Note: In the current implementation, mask is returned if
no value-sets are given. This should probably change so that a new object is
returned.]

18

4.2.2 mask

mask (cset)

cset a ConnectionSet

return value the Mask of cset

This function returns the Mask of the ConnectionSet cset.

4.2.3 value

value (cset , k)

cset a ConnectionSet

k index of the value-set to return
return value the k:th ValueSet of cset

This function returns the k:th ValueSet of the ConnectionSet cset.

4.2.4 arity

arity (cset)

cset a ConnectionSet

return value the arity of cset

This function returns the arity of the ConnectionSet cset. The arity of a
connection-set is the number of value-sets of the connection-set.

4.2.5 vset

vset (x)
vset (callable)

x a value
callable a callable taking two arguments

This function constructs and returns a value-set. In the first form, the number
x is taken as the value of each of all existing connections. In the second form,
the value of each existing connection is the one returned by applying callable

to the source and target indices of the connection.

4.3 Integer sets

In the current python-csa implementation, integer sets are usually represented
using the class IntervalSet (see section 4.1.4). Functions that take integer
sets as arguments generally coerce tuple:s of two non-negative integers into
IntervalSet:s:

19

(1 , 2) −−> IntervalSet ([(1 , 2)])

4.3.1 ival

ival (beginning , end)

beginning start of interval
end end of interval (inclusive)
return value the interval (beginning, end)

This function returns the interval (beginning, end) represented as a set of non-
negative integers. The underlying representation is space-efficient.

4.3.2 N

N

This constant represents the set of all non-negative integers.

4.3.3 cross

cross (set0 , set1)

set0 a set of non-negative integers
set1 a set of non-negative integers
return value the Cartesian cross product of set0 and set1

This function returns the Cartesian cross product of set0 and set1 represented
as a Mask.

Example 4.3: The Cartesian product of (1,2) and (3,4)

>>> tabulate (cross ((1 , 2) , (3 , 4)))
1 3
2 3
1 4
2 4

4.4 Utilities

tabulate (cset)

cset a ConnectionSet

20

This procedure tabulates the connection-set cset. An iteration over the con-
nections in cset is performed. The source and target indices are tabulated in
the first and second columns with value-sets tabulated in columns three and
upwards.

Tabulate can be used to print connection-sets during development.

4.5 Elementary masks

4.5.1 empty

empty

This constant Mask represents the set of no connection. Iterating results in
nothing, no matter how hard you try.

4.5.2 full

f u l l

This constant Mask represents the (infinite) set of all connections.

Example 4.4: Finite portion of the full mask

>>> tabulate (cross ((0 , 1) , (0 , 1)) ∗ full)
0 0
1 0
0 1
1 1

4.5.3 oneToOne

oneToOne

This constant Mask represents the (infinite) set of one-to-one connections. It
resembles Kronecker’s delta or an infinite identity matrix.

Example 4.5: Finite portion of the oneToOne mask

>>> tabulate (cross ((0 , 3) , (0 , 3)) ∗ oneToOne)
0 0
1 1
2 2
3 3

21

4.5.4 random

random (p)

p the probability for a potential connection to ex-
ist

return value an infinite Mask where the existence of each con-
nection is determined by a Bernoulli trial with
probability p.

This function returns a random mask where a connection between given source
and target indices exists with probability p.

See also section 4.9.1 for the set of functions returning random operators.
These support sampling a given number of connections from a finite mask or
random sampling with constraints on fanIn or fanOut.

4.6 Set operators

The following binary operators can be applied to integer sets, masks and connection-
sets:

A + B the multiset sum of A and B
A − B the set difference between A and B
A ∗ B the intersection of A and B

In addition, the following unary operator applies to integer sets and masks:

˜A the complement of A

4.7 Arithmetic operators

The arithmetic operators on connection-sets which are defined in the connection-
set algebra are not yet implemented in the python-csa demo implementation.

4.8 Operator application

The operator application operator is used to apply unary connection-set algebra
operators to their operand:

operator ∗ operand apply operator to operand

The operator application operator is overloaded with the arithmetic multi-
plication and set intersection operators.

22

4.9 Miscellaneous connection-set operators

4.9.1 random

random (N = n) ∗ cset

n the number of connections to sample (keyword
arg named N)

cset any finite connection-set
return value a connection-set containing n randomly sampled

connections from cset

random (fanIn = n) ∗ cset

n the number of sources sampled for each target
(keyword arg named fanIn)

cset any finite connection-set
return value a connection-set randomly sampled from cset

with fanIn n

random (fanOut = n) ∗ cset

n the number of targets sampled for each source
(keyword arg named fanOut)

cset any finite connection-set
return value a connection-set randomly sampled from cset

with fanOut n

4.9.2 disc

disc (r) ∗ metric

r radius
return value a mask of all connections for which

metric (source, target) < r

4.9.3 gaussian

gaussian (sigma , cutoff) ∗ metric

sigma

cutoff

return value a value set associating the result of applying
the normalized gaussian function with stan-
dard deviation sigma and cutoff cutoff to
metric (source, target) to each connection

23

4.9.4 block

block (M , N)
block (M)

M

N

4.9.5 block1

block1 (N)

4.9.6 transpose

transpose

4.9.7 shift

sh i f t (M , N)

M

N

4.9.8 fix

f ix

4.10 Geometry

4.10.1 grid2d

grid2d (width , xScale = 1 .0 , yScale = 1 .0 , x0 = 0 .0 , y0 = 0 . 0)

width

xScale

return value

24

4.10.2 random2d

random2d (N , xScale = 1 .0 , yScale = 1 . 0)

return value

4.10.3 euclidMetric2d

euclidMetric2d (g1 , [g2])

g1

g2 optional
return value

4.10.4 ProjectionOperator

@ProjectionOperator

def fname (p) :
. . .
return q

fname

p

4.11 Plotting

4.11.1 show

show (cset , N0 = 30 , [N1])

cset

N0

4.11.2 gplotsel2d

gplotsel2d (g , cset , source = N , target = N ,
N0 = 900 , [N1] , [value] , range=[] , lines = True)

gplot2d (g , N , [color] , show = True)

25

26

