
Programming spiking neural networks with Scilab

Romain Brette
Ecole Normale Supérieure, Paris

brette@di.ens.fr

September 12, 2006

The last version of this document can be found at
http://www.di.ens.fr/˜brette/ScilabNeuron.pdf.

This is a short notice documenting the Scilab files that implement the first two bench-
marks described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2006).
Brette, Rudolph, Carnevale, Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe,
Natschlger, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel, Vibert, Alvarez, Muller,
Davison, El Boustani and Destexhe. Journal of Computational Neuroscience.

These benchmarks are random networks of integrate-and-fire neurons. The reader is
advised to read this notice along with the code (CUBA, COBAEuler or COBARungeKutta).

1 About Scilab

Scilab is a free vector-based scientific software (resembling Matlab) which can downloaded
at http://www.scilab.org. It features an interpreted programming language, plot-
ting tools and many mathematical functions. Scilab can be programmed as a standard im-
perative language, using loops and conditions. However, using loops is usually very slow
and Scilab was designed to be efficient when dealing with vectors. The key to efficient (and
elegant) Scilab programming is to replace loops by vector-based operations. Documenta-
tion and tutorials are available on the web site. There is an exhaustive on-line help system
that can be queried with help name_of_command.

2 Data structures for spiking neural networks

Basic concepts and algorithms are described in the review paper mentioned in the introduc-
tion. Here I am only considering clock-driven simulation with no transmission delay.

2.1 State matrix

If there is no transmission delay, then spike times need not be stored. Each neuron can
be described by a number of state variables. One special state variable is the membrane
potential. Thus the state of a neuron can be stored in a row vector with p elements, where

1



the first element is the membrane potential. Then the state of a network of N neurons can
be stored in an N×p matrix, with each row being the state vector of a neuron. For example,
the following command creates the state matrix of a network with N neurons and 3 state
variables per neuron:

S=zeros(N,3);

2.2 Weight matrix

The synaptic weights can be described by an N × N matrix, where the value at row j
and column i is the synaptic weight of connection i→ j. However, not all neuron pairs are
connected, so that most entries of the weight matrix are null, i.e., the matrix is sparse. Scilab
has special built-in functions and structures for sparse matrices. Only non-zero elements of
a sparse matrix are stored. A nice feature of Scilab is that it deals with sparse matrices in
a transparent way, i.e., once the matrix is defined as sparse, one can use all standard matrix
operations as if it was a usual matrix. The following command creates a sparse matrix of 0s
and 1s with 2% of its elements with value 1:

W=bool2s(sprand(N,N,0.02,’uniform’)>0);

Even when it is sparse, the weight matrix can be very large, which can result in an error
message from Scilab. The default memory allocated to the variables is quite low, and it can
be increased by the command stacksize.

2.3 Spike times

An easy way to store spike times is to use a matrix with two columns, the first one corre-
sponding to the neuron number, the second one to the spike timing. The following com-
mands initialize the matrix and insert a spike defined by the time t and neuron number
i.

spiketimes=[];
spiketimes=[spiketimes;i,t];

3 Programming a network simulation

A step of a clock-driven algorithm consists in 1) state updates and 2) propagation of spikes.

3.1 State updates

For linear models (current-based models), the state of all neurons in the network are simply
updated by the matrix operation S=S*A, where S is the state matrix and A is the update ma-
trix. This is the same as doing S(i,:)=S(i,:)*A for each neuron i, where S(i,:) is
the row-vector of states of neuron i. For non-linear models, one uses an integration method
such as Euler or Runge-Kutta (examples are in files COBAEuler and COBARungeKutta).

2



3.2 Propagation of spikes

The following command:

spikes=find(S(:,1)>Vt);

returns a index vector of all neurons whose membrane potential is greater than the threshold
V t. Then W(:,spikes) is the submatrix of the weight matrix made of all synapses i→ j
such that neuron i is emitting a spike. Then sum(W(:,spikes),’c’) is a column-
vector containing the total synaptic input received by each neuron. If synaptic interactions
act on the second state variable, then the following command updates the state of all neurons
receiving a spike:

S(:,2)=S(:,2)+sum(W(:,spikes),’c’);

In general, one would have to distinguish between excitatory and inhibitory synapses,
which act on distinct variables (see sample code).

After spiking, the membrane potential is reset: S(spikes,1)=Vr;.
Spike times are inserted as follows:

spiketimes=[spiketimes;spikes’,ones(spikes’)*t];

Note that spikes’ is a column-vector containing the indexes of all spiking neurons and
ones(spikes’)*t is a column-vector with the same size as spikes’ and all entries
with value t.

4 Concluding remarks

The time-consuming operation here is the propagation of spikes, more precisely the com-
mand S(:,2)=S(:,2)+sum(W(:,spikes),’c’). Simulations with Scilab are typi-
cally much slower than with a compiled language such as C but still acceptable for medium-
scale network simulations, all the more as writing a program can be very fast once one
masters the concepts of vector-based programming.

Although Scilab programs are interpreted, simulation time is acceptable because for
clock-driven algorithms, all operations can be vectorized. Event-driven algorithms can also
be programmed with Scilab, but as they cannot be fully vectorized, their performance is
very limited compared to compiled languages.

3


