TITLE Delayed-rectifier Potassium Current for Cortical Neuron Axon
COMMENT
Model Reference:
Foust, A.J., Yu, Y., Popovic, M., Zecevic, D. and McCormick, D.A.,
2011. "Somatic membrane potential and Kv1 channels control spike
repolarization in cortical axon collaterals and presynaptic boutons."
Journal of Neuroscience, 31(43), pp.15490-15498.
Implemented by John Fleming - john.fleming@ucdconnect.ie - 06/12/18
Edits:
ENDCOMMENT
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(S) = (siemens)
}
NEURON {
SUFFIX cortical_axon_i_kv
USEION k WRITE ik : Using k ion, treat the reversal potential as a parameter and write to ik so the total k current can be tracked
RANGE g_Kv, i_Kv : Potassium current, specific conductance and equilibrium potential
}
PARAMETER {
ek = -90 (mV)
i_Kv = 0.0 (mA/cm2) : Parameter to record this current separately to total sodium current
g_Kv = 0.6e-3 (S/cm2)
Q_s = 3.209 : Temperature rescaling - Q_10 = 2.3 => Q_s = (Q_10)^((37-23)/10) = 3.209
}
ASSIGNED {
v (mV)
ik (mA/cm2)
alpha_n
beta_n
n_inf
tau_n (ms)
}
STATE {
n
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = g_Kv*n*(v - ek)
i_Kv = ik : Record i_Kv (just this potassium current) to check it is working
}
UNITSOFF
INITIAL {
settables(v)
n = n_inf
}
DERIVATIVE states {
settables(v)
n' = (n_inf-n)/tau_n
}
PROCEDURE settables(v) {
TABLE alpha_n, beta_n, n_inf, tau_n FROM -100 TO 100 WITH 400
alpha_n = Q_s*0.01*vtrap(-(v-30),9)
beta_n = Q_s*0.002*vtrap((v-30),9)
n_inf = alpha_n/(alpha_n+beta_n)
tau_n = 1/(alpha_n+beta_n)
}
FUNCTION vtrap(x,y) {
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}else{
vtrap = x/(exp(x/y)-1)
}
}
UNITSON