################################################################################ # CONDUCTANCE-BASED MODEL OF A PAIR OF NEURONS: # A GABAERGIC NEURON AND A PYRAMIDAL NEURON ################################################################################ #------------------------------------------------------------------------------- # INITIAL CONDITIONS #------------------------------------------------------------------------------- # initial conditions given in .ic file #------------------------------------------------------------------------------- # MODEL PARAMETERS #------------------------------------------------------------------------------- # parameter values given in .par file # EXTERNAL GLUTAERGIC CONDUCTANCES FOR EACH NEURON par g_D_e par g_D_i # CONSERVATION OF MASS par Na_sum par Cl_sum # RATIO OF TOTAL INTRACELLULAR VOLUME OVER EXTRACELLULAR VOLUME par beta_1 # RATIO OF GABAERGIC NEURON VOLUME OVER PYRAMIDAL NEURON VOLUME par beta_2 # PUMP MAXIMAL RATE AT -70 mV par rho_pump # PUMP HALF ACTIVATION INTRACELLULAR SODIUM par K_pump_Na # PUMP HALF ACTIVATION INTRACELLULAR POTASSIUM par K_pump_K # PARAMETERS FOR VOLTAGE DEPENDENCE OF THE PUMP par a par b # EXTRACELLULAR POTASSIUM DIFFUSION RATE par epsilon # POTASSIUM BATH CONCENTRATION par K_bath #### PYRAMIDAL NEURON # FIRST INTEGRAL par H_1 # CONVERSION FACTOR FROM CURRENT DENSITY TO CONCENTRATION PER TIME par gamma_e # EXCITATORY SYNAPSE global 1 v_e-vethres {s_e=1} # TIME CONSTANT FOR DECAY par tau_e # VOLTAGE THRESHOLD par vethres # FAST INACTIVATING SODIUM MAXIMAL CONDUCTANCE par g_Na_FI_e # DELAYED RECTIFIER POTASSIUM MAXIMAL CONDUCTANCE par g_K_DR_e # CALCIUM ACTIVATED POTASSIUM MAXIMAL CONDUCTANCE par g_K_AHP_e # CALCIUM ACTIVATED POTASSIUM CURRENT HALF ACTIVATION CALCIUM CONCENTRATION par K_Ca # SODIUM LEAK CONDUCTANCE par g_Na_L_e # POTASSIUM CONDUCTANCE par g_K_L_e # CHLORIDE LEAK CONDUCTANCE par g_Cl_L_e # KCC2 COTRANSPORTER STRENGTH par rho_KCC # NKCC1 COTRANSPORTER STRENGTH par rho_NKCC # NKCC1 HALF ACTIVATION POTASSIUM CONCENTRATION par K_NKCC_K # GLUAMATERGIC SYNAPSE MAXIMAL CONDUCTANCE par g_GLU_e # GABAERGIC SYNAPSE MAXIMAL CONDUCTANCE par g_GABA_e # CALCIUM MAXIMAL CONDUCTANCE par g_Ca_e # CALCIUM REVERSAL POTENTIAL par E_Ca_e # TIME CONSTANT FOR CALCIUM EXTRUSION AND BUFFERING par tau_Ca #### GABAERGIC NEURON # FIRST INTEGRAL par H_2 # CONVERSION FACTOR FROM CURRENT DENSITY TO CONCENTRATION PER TIME par gamma_i # INHIBITORY SYNAPSE global 1 v_i-vithres {s_i=1} # TIME CONSTANT FOR DECAY par tau_i # VOLTAGE THRESHOLD par vithres # FAST INACTIVATING SODIUM MAXIMAL CONDUCTANCE par g_Na_FI_i # PERSISTENT SODIUM MAXIMAL CONDUCTANCE par g_Na_P_i # SHIFT OF VOLTAGE DEPENDENCE OF ACTIVATION FOR PERSITENT SODIUM CURRENT par shift_P # DELAYED RECTIFIER POTASSIUM MAXIMAL CONDUCTANCE par g_K_DR_i # SODIUM LEAK CONDUCTANCE par g_Na_L_i # POTASSIUM LEAK CONDUCTANCE par g_K_L_i # GLUTAMATERGIC SYNAPSE MAXIMAL CONDUCTANCE par g_GLU_i #------------------------------------------------------------------------------- # CONSERVATIONS, REVERSAL POTENTIALS, (IN)ACTIVATIONS FUNCTIONS AND CURRENTS #------------------------------------------------------------------------------- #### CONSERVATIONS Na_o = Na_sum - beta_1*(1/(1+beta_2)*Na_e + beta_2/(1+beta_2)*Na_i ) Cl_o = Cl_sum - beta_1/(1+beta_2)*Cl_e aux Na_o_ = Na_o aux Cl_o_ = Cl_o K_e = gamma_e*(v_e - H_1) - Na_e + Cl_e K_i = gamma_i*(v_i - H_2) - Na_i aux K_e_ = K_e aux K_i_ = K_i #### PYRAMIDAL NEURON # REVERSAL POTENTIALS E_K_e = 26.64*log(K_o/K_e) E_Na_e = 26.64*log(Na_o/Na_e) E_Cl_e = 26.64*log(Cl_e/Cl_o) aux E_K_e_ = E_K_e aux E_Na_e_ = E_Na_e aux E_Cl_e_ = E_Cl_e # (IN)ACTIVATION FUNCTIONS am_e = 0.32*(v_e + 54)/(1-exp(-(v_e + 54)/4)) bm_e = 0.28*(v_e + 27)/(exp((v_e + 27)/5) - 1) ah_e = 0.128*exp( - (v_e + 50)/18) bh_e = 4/(1 + exp( - (v_e + 27)/5)) an_e = 0.032*(v_e + 52)/(1 - exp( - (v_e + 52)/5)) bn_e = 0.5*exp( - (v_e + 57)/40) minf_Ca = 1/(1 + exp(-(v_e + 25)/2.5)) # SODIUM FAST INACTIVATING CURRENT I_Na_FI_e = g_Na_FI_e*m_e^3*h_e*(v_e - E_Na_e) aux I_Na_FI_e_ = I_Na_FI_e # POTASSIUM DELAYED RECTIFIER CURRENT I_K_DR_e = g_K_DR_e*n_e^4*(v_e - E_K_e) aux I_K_DR_e_ = I_K_DR_e # CALCIUM DEPENDENT POTASSIUM CURRENT I_K_AHP_e = g_K_AHP_e*(Ca_e/(Ca_e + K_Ca))*(v_e - E_K_e) aux I_K_AHP_e_ = I_K_AHP_e # LEAK CURRENTS I_Na_L_e = g_Na_L_e*(v_e - E_Na_e) aux I_Na_L_e_ = I_Na_L_e I_K_L_e = g_K_L_e*(v_e - E_K_e) aux I_K_L_e_ = I_K_L_e I_Cl_L_e = g_Cl_L_e*(v_e - E_Cl_e) aux I_Cl_L_e_ = I_Cl_L_e I_L_e = I_Na_L_e + I_K_L_e + I_Cl_L_e aux I_L_e_ = I_L_e # KCC2 COTRANSPORTER I_KCC = rho_KCC*log((K_e*Cl_e)/(K_o*Cl_o)) aux I_KCC_ = I_KCC # NKCC1 COTRANSPORTER I_NKCC = rho_NKCC/(1+exp(K_NKCC_K-K_o))*(log((K_e*Cl_e)/(K_o*Cl_o))+log((Na_e*Cl_e)/(Na_o*Cl_o))) aux I_NKCC_ = I_NKCC # PUMP CURRENT I_pump_e = rho_pump * (1+tanh(a/26.64*v_e + b))/(1+tanh(a/26.64*(-70) + b)) * (Na_e/(Na_e + K_pump_Na))^3*(K_o/(K_o + K_pump_K))^2 aux I_pump_e_ = I_pump_e # SYNAPTIC EXCITATORY CURRENT I_Na_GLU_e = g_GLU_e/2*s_e*(v_e - E_Na_e) I_K_GLU_e = g_GLU_e/2*s_e*(v_e - E_K_e) I_GLU_e = I_Na_GLU_e + I_K_GLU_e aux I_GLU_e_ = I_GLU_e # SYNAPTIC INHIBITORY CURRENT I_GABA_e = g_GABA_e*s_i*(v_e - E_Cl_e) aux I_GABA_e_ = I_GABA_e # EXTERNAL INPUT I_Na_D_e = g_D_e/2*(v_e - E_Na_e) I_K_D_e = g_D_e/2*(v_e - E_K_e) I_D_e = I_Na_D_e + I_K_D_e aux I_D_e_ = I_D_e #### GABAERGIC NEURON # REVERSAL POTENTIALS E_K_i = 26.64*log(K_o/K_i) E_Na_i = 26.64*log(Na_o/Na_i) aux E_K_i_ = E_K_i aux E_Na_i_ = E_Na_i # (IN)ACTIVATION FUNCTIONS minf_i = 1/(1+exp(-(v_i-(-24))/11.5)) minf_P_i = 1/(1+exp(-(v_i+shift_P-(-24))/11.5)) h_inf_i = 1/(1+exp(-(v_i-(-58.3))/(-6.7))) tau_h_i = 0.5 + 14/(1 + exp(-(v_i-(-60))/(-12))) n_inf_i = 1/(1 + exp(-(v_i - (-12.4))/6.8)) tau_n_i = (0.087 + 11.4/(1 + exp((v_i + 14.6)/8.6)))*(0.087 + 11.4 * 1/(1 + exp(-(v_i - 1.3)/18.7))) # SODIUM FAST INACTIVATING CURRENT I_Na_FI_i = g_Na_FI_i*minf_i^3*h_i*(v_i - E_Na_i) aux I_Na_FI_i_ = I_Na_FI_i # SODIUM PERSISTENT CURRENT I_Na_P_i = g_Na_P_i*minf_P_i^3*(v_i - E_Na_i) aux I_Na_P_i_ = I_Na_P_i # POTASSIUM DELAYED RECTIFIER CURRENT I_K_DR_i = g_K_DR_i*n_i^2*(v_i - E_K_i) aux I_K_DR_i_ = I_K_DR_i # LEAK CURRENTS I_Na_L_i = g_Na_L_i*(v_i - E_Na_i) aux I_Na_L_i_ = I_Na_L_i I_K_L_i = g_K_L_i *(v_i - E_K_i) aux I_K_L_i_ = I_K_L_i I_L_i = I_Na_L_i + I_K_L_i aux I_L_i_ = I_L_i # PUMP CURRENT I_pump_i = rho_pump * (1+tanh(a/26.64*v_i + b))/(1+tanh(a/26.64*(-70) + b)) * (Na_i/(Na_i + K_pump_Na))^3*(K_o/(K_o + K_pump_K))^2 aux I_pump_i_ = I_pump_i # SYNAPTIC EXCITATORY CURRENT I_Na_GLU_i = g_GLU_i/2*s_e*(v_i - E_Na_i) I_K_GLU_i = g_GLU_i/2*s_e*(v_i - E_K_i) I_GLU_i = I_Na_GLU_i + I_K_GLU_i aux I_GLU_i_ = I_GLU_i # EXTERNAL INPUT I_Na_D_i = g_D_i/2*(v_i - E_Na_i) I_K_D_i = g_D_i/2*(v_i - E_K_i) I_D_i = I_Na_D_i + I_K_D_i aux I_D_i_ = I_D_i #### EXTRACELLULAR POTASSIUM DIFFUSION I_diff = epsilon*(K_o-K_bath) aux I_diff_ = I_diff #------------------------------------------------------------------------------- # ODEs #------------------------------------------------------------------------------- #### PYRAMIDAL NEURON v_e' = - I_Na_FI_e - I_K_DR_e - I_K_AHP_e - I_L_e - I_pump_e - I_GLU_e - I_GABA_e - I_D_e m_e' = am_e*(1 - m_e) - bm_e*m_e h_e' = ah_e*(1 - h_e) - bh_e*h_e n_e' = an_e*(1 - n_e) - bn_e*n_e Na_e' = - gamma_e*(I_Na_FI_e + I_Na_L_e + 3*I_pump_e + I_Na_GLU_e + I_Na_D_e) - I_NKCC Cl_e' = gamma_e*(I_Cl_L_e + I_GABA_e) - I_KCC - 2*I_NKCC Ca_e' = - gamma_e/2*g_Ca_e*minf_Ca*(v_e - E_Ca_e) - Ca_e/tau_Ca s_e' = - (1/tau_e)*s_e #### GABAERGIC NEURON v_i' = - I_Na_FI_i - I_Na_P_i - I_K_DR_i - I_L_i - I_pump_i - I_GLU_i - I_D_i h_i' = (h_inf_i - h_i)/tau_h_i n_i' = (n_inf_i - n_i)/tau_n_i Na_i' = - gamma_i*( I_Na_FI_i + I_Na_P_i + I_Na_L_i + 3*I_pump_i + I_Na_GLU_i + I_Na_D_i ) s_i' = - (1/tau_i)*s_i #### EXTRACELLULAR POTASSIUM K_o' = beta_1 * ( 1/(1+beta_2)*(gamma_e*(I_K_DR_e + I_K_AHP_e + I_K_L_e - 2*I_pump_e + I_K_GLU_e + I_K_D_e) + I_KCC + I_NKCC) + beta_2/(1+beta_2)*gamma_i*(I_K_DR_i + I_K_L_i - 2*I_pump_i + I_K_GLU_i + I_K_D_i) ) - I_diff #------------------------------------------------------------------------------- # NUMERICS #------------------------------------------------------------------------------- @ method=rk4, dt=0.01, total=30000, nout=1 @ xp=t, yp=v_e, xlo=0, xhi=30000, ylo=-100, yhi=100 @ bound=9000000 @ maxstor=9000000 done