//genesis /********************************************************************** ** This simulation script and the files included in this package ** are Copyright (C) 2013 by David Beeman (dbeeman@colorado.edu) ** and are made available under the terms of the ** GNU Lesser General Public License version 2.1 ** See the file copying.txt for the full notice. *********************************************************************/ /*====================================================================== Version 2.5 of a 'simple yet realistic' model of primary auditory layer 4, described in: Beeman D (2013) A modeling study of cortical waves in primary auditory cortex. BMC Neuroscience, 14(Suppl 1):P23 doi:10.1186/1471-2202-14-S1-P23 (http://www.biomedcentral.com/1471-2202/14/S1/P23) This model is based on the earlier simple cortical model dualexpVA-HHnet.g: The GENESIS implementation of the dual exponential conductance version of the Vogels-Abbott (J. Neurosci. 25: 10786--10795 (2005)) network model with Hodgkin-Huxley neurons. Details are given in Brett et al. (2007) Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 23: 349-398. http://senselab.med.yale.edu/SenseLab/ModelDB/ShowModel.asp?model=83319 A network of simplified Regular Spiking neocortical neurons providing excitatory connections and Fast Spiking interneurons providing inhibitory connections. Further description is given with the RSnet.g example from the GENESIS Neural Modeling Tutorials (http://genesis-sim.org/GENESIS/UGTD/Tutorials/) ======================================================================*/ str script_name = "ACnet2-main" // version with default parameters str RUNID = "0000" // default ID string for output file names float tmax = 1.0 // max simulation run time (sec) float dt = 20e-6 // simulation time step float out_dt = 0.0001 // output every 0.1 msec float netview_dt = 0.0002 // slowest clock for netview display // Booleans indicating the type of calculations or output int debug = 3 // display additional information during setup // Use a lower number for less verbosity int batch = 0 // if (batch) run the default simulation without graphics int graphics = 1 // display control panel, graphs, optionally net view int netview = 0 // show network activity view (slow, but pretty) int netview_output = 1 // Record network output (soma Vm) to a file int binary_file = 1 // if 0, use asc_file to produce ascii output // else use disk_out to produce binary FMT1 file int write_asc_header = 1 // write header information to ascii file int EPSC_output = 1 // output Ex_ex EPS currents to file int calc_EPSCsum = 1 // calculate summed excitatory post-synaptic currents int use_weight_decay = 0 // Use exponential decay of weights with distance int use_prob_decay = 1 // Use connection probablility exp(-r*r/(sigma*sigma)) int connect_network = 1 // Set to 0 for testing with unconnected cells int hflag = 1 // use hsolve if hflag = 1 int hsolve_chanmode = 4 // chanmode to use if hflag != 0 int use_sprng = 1 // Use SPRNG random number generator, rather than default RNG int normalize_wts = 0 // Normalize the weights to account for edges /* Specification of stimulation input patterns (distribution of inputs) and type of input (e. g. a steady spike train or a randomspike source, gated with a pulsegen, or a more realistic thalamic input model "MGBv") Coordinates for the "line" and "box" patterns (Ex_NX0_in, Ex_NXlen_in, etc.) are defined in simple_inputs.g */ str input_type = "pulsed_spiketrain" // pulsed spike train input // str input_type = "pulsed_randomspike" // pulsed input from a randomspike of specifed freq // str input_type = "MGBv" // input from simulated thalamic cells str input_pattern = "row" // input goes to an entire row of cells // str input_pattern = "line" // input to a specified line of cells within row // str input_pattern = "box" // input to a square block of cells // Set random number seed. If seed is 0, set randseed from clock, // else from given seed int seed = 0 // Simulation will give different random numbers each time /****** the seed is set here to reproduce the results in Beeman (2013) *****/ int seed = 1369497795 if (use_sprng) setrand -sprng end if (seed) randseed {seed} else seed = {randseed} end /* Customize these strings and parameters to modify this simulation for other excitatory or inhibitory cells. */ str Ex_cellfile = "pyr_4_asym.p" // name of the excitatory cell parameter file str Inh_cellfile = "bask.p" // name of the inhibitory cell parameter file str protodefs_file = "protodefs.g" // file that creates prototypes in /library str Ex_cell_name = "pyr_4" // name of the excitatory cell str Inh_cell_name = "bask_4" // name of the inhibitory cell // Paths to synapses on cells: cell_synapse = compartment-name/synchan-name // e.g. Ex_inh_synpath is path to inhibitory synapse on excitatory cell str Ex_ex_synpath = "apical3/AMPA_pyr" // pyr middle apical dendrite AMPA str Ex_inh_synpath = "basal0/GABA_pyr" // pyr prox basal GABA str Inh_ex_synpath = "dend/AMPA_bask" // bask dend AMPA str Inh_inh_synpath = "soma/GABA_bask" // bask soma GABA str Ex_bg_synpath = "basal1/AMPA_pyr" // synchan for background input // Excitatory drive inputs - path to synapse on Ex and Inh cells to apply drive str Ex_drive_synpath = "apical1/AMPA_pyr" // drive -> pyr prox oblique apical str Inh_drive_synpath = "dend/AMPA_bask_drive" // drive -> bask dendrite // Label to appear on the graph str graphlabel = "Vm of row center cell" str net_efile = "Ex_netview" // filename prefix for Ex_netview data str net_ifile = "Inh_netview" // filename prefix for Inh_netview data str net_EPSC_file = "EPSC_netview" // filename prefix for Ex_ex_synpath Ik (EPSCs) str EPSC_sum_file = "EPSC_sum" // filename prefix for summed Ex_ex_synpath Ik str sum_file = "run_summary" // text file prefix for summary of run params /* Size of the excitatory and inhibitory networks. The default size is a square patch of cortex with 48 x 48 excitatory cells and 24 x 24 inhibitory, spanning two octaves. For a longer piece, spanning six octaves (about 1.92 x 5.76 mm), use Ex_NY = 144 and Inh_NY = 72. */ int Ex_NX = 48; int Ex_NY = 48 int Inh_NX = 24; int Inh_NY = 24 /* In this extension of the RSnet tutorial script, there will be a layer of excitatory cells on a grid, and another layer of inhibitory cells, with twice the grid spacing, in order to have a 4:1 ratio of excitatory to inhibitory cells. */ /* Neurons will be placed on a two dimensional NX by NY grid, with points SEP_X and SEP_Y apart in the x and y directions. Cortical networks typically have pyramidal cell separations on the order of 10 micrometers, and can have local pyramidal cell axonal projections of up to a millimeter or more. For small network models, one sometimes uses a larger separation, so that the model represents a larger cortical area. In this case, the neurons in the model are a sparse sample of the those in the actual network, and each one of them represents many in the biological network. To compensate for this, the conductance of each synapse may be scaled by a synaptic weight factor, to represent the increased number of neurons that would be providing input in the actual network. Here, we use a separation of 40 um that is larger than the spacing between cells in A1. With no axonal delays, actual spacing is irrelevant. */ // 40 micrometer spacing between cells float Ex_SEP_X = 40e-6 float Ex_SEP_Y = 40e-6 float Inh_SEP_X = 2*Ex_SEP_X // There are 1/4 as many inihibitory neurons float Inh_SEP_Y = 2*Ex_SEP_Y /* "SEP_Z" should be set to the actual layer thickness, in order to allow possible random displacements of cells from the 2-D lattice. Here, it needs to be large enough that any connections to distal dendrites will be within the range -SEP_Z to SEP_Z. */ float Ex_SEP_Z = 1.0 float Inh_SEP_Z = Ex_SEP_Z // These definitions depend on MGBv_input.g or simple_inputs.g int Ninputs = Ex_NY - 16 // Number of auditory input channels from the thalamus (MGB) float drive_weight = 1.0 // Default weight of all input drive connections float octave_distance = 0.96e-3 // approx 1 mm/octave - integer rows/octave = 24 // octave_distance = Ex_SEP_Y // just one row int rows_per_octave = {round {octave_distance/Ex_SEP_Y}} /* input_spread is the number of rows below and above the "target row" getting thalamic input. Some typical values can be found in Miller, et al. (2001) Neuron 32:151-160. The implementation in simple_inputs.g function 'connect_inputs' creates connections with an exponentially decaying probablility to adjacent rows +/- input_spread. */ // int input_spread = {round {rows_per_octave/6.0}} // 1/6 octave int input_spread = 0 // no spread of thalamic connections to other rows /* input_delay and input_jitter provide a decorrelation between the inputs to a row by introducing a random delay to each cell uniformly distributed between input_delay*(1 - input_jitter) and input_delay*(1 + input_jitter). A reasonable amount of decorrelation can be provided with input_delay = 0.002 seconds, and input_jitter = 0.4. */ float input_delay, input_jitter // used in simple-inputs.g or MGBv_input.g float input_delay = 0.0 float input_jitter = 0.0 // float spike_jitter = 0.0005 // 0.5 msec jitter in thalamic inputs /* Richardson, et al. (2009) J. Neurosci. 2009;29 6406-6417 Mean EPSP jitter for thalamic inputs in the auditory thalamocortical system was 0.41 +/- 0.13 msec. */ float spike_jitter = 0.0 //default is no jitter in arrival time /* parameters for synaptic connections */ float syn_weight = 1.0 // synaptic weight, effectively multiplies gmax /* prop_delay is the delay per meter, or 1/cond_vel. The value often used corresponds to Shlosberg et al. 2008 rat somatosenory cortex axonal cond velocities of RS and Martinotti cell axons ranging from 0.2 to 0.3 m/sec. With a value of 0.25 m/sec, cells 1 mm apart have a 4 msec conduction delay However this value is for longer distance interlaminar axons between layer 5 and layer 1 in rat somatosensory cortex. Estimates for shorter distance (< a few mm) intralaminar unmeyelinated axons are in the range of 60-90 mm/s. (Salin and Price, 1996). The slower velocity of 0.08 m/sec can have a signigicant effect in the delay of the onset of inhibition, as connected cells 400 um apart can have a delay of 5 msec. */ float prop_delay = 12.5 // delay per meter, or 1/cond_vel float Ex_ex_gmax = 30e-9 // Ex_cell ex synapse float Ex_inh_gmax = 0.6e-9 // Ex_cell inh synapse float Inh_ex_gmax = 0.15e-9 // Inh_cell ex synapse float Inh_inh_gmax = 0.0e-9 // Inh_cell inh synapse float Ex_bg_gmax = 80e-9 // Ex_cell background excitation // Initially use same values as network synapses float Ex_drive_gmax = 50e-9 // Ex_cell thalamic input float Inh_drive_gmax = 1.5e-9 // Inh_cell thalamic input // Poisson distributed random excitation frequency of Ex_cells // NOTE: For use with hsolve, the synchan frequency must be set to a non-zero // value before the solver setup. Then it may be set to any value, including zero. float frequency = 8.0 // time constants for dual exponential synaptic conductance float tau1_ex = 0.001 // rise time for excitatory synapses float tau2_ex = 0.003 // decay time for excitatory synapses float Inh_tau1_ex = 0.003 // make a special case for Inh cell excitatory channels float Inh_tau2_ex = 0.003 float tau1_inh = 0.005 // rise time for inhibitory synapses float tau2_inh = 0.012 // decay time for inhibitory synapses // float tau2_inh = 0.025 // decay time for "schizophrenic" case /* Give a range of tau2_inh from tau2_inh*(1-tau2_inh_spreadfactor) to tau2_inh*(1+tau2_inh_spreadfactor) - set to zero for a single value Set to 0.6 for a range of 8 +/- 4.8 msec, or 25 +/- 15 msec */ float tau2_inh_spreadfactor = 0.0 /* for debugging and exploring - see comments in file for details Usage: synapse_info path_to_synchan Example: synapse_info /Ex_layer/Ex_cell[5]/dend/Ex_channel */ if (debug) include synapseinfo.g end // ============================= // Function definitions // ============================= /**** set synchan parameters ****/ function set_Ex_ex_gmax(value) // excitatory synchan gmax in Ex_cell float value // value in nA Ex_ex_gmax = {value}*1e-9 // use this for driver input also setfield /Ex_layer/{Ex_cell_name}[]/{Ex_ex_synpath} gmax {Ex_ex_gmax} end function set_Ex_drive_gmax(value) // thalamic drive synchan gmax in Ex_cell float value // value in nA Ex_drive_gmax = {value}*1e-9 setfield /Ex_layer/{Ex_cell_name}[]/{Ex_drive_synpath} gmax {Ex_drive_gmax} end function set_Ex_bg_gmax(value) // background ex synchan gmax in Ex_cell float value // value in nA Ex_bg_gmax = {value}*1e-9 setfield /Ex_layer/{Ex_cell_name}[]/{Ex_bg_synpath} gmax {Ex_bg_gmax} end function set_Inh_ex_gmax(value) // excitatory synchan gmax in Inh_cell float value // value in nA Inh_ex_gmax = {value}*1e-9 // use this for driver input also setfield /Inh_layer/{Inh_cell_name}[]/{Inh_ex_synpath} gmax {Inh_ex_gmax} end function set_Inh_drive_gmax(value) // thalamic drive synchan gmax in Inh_cell float value // value in nA Inh_drive_gmax = {value}*1e-9 setfield /Inh_layer/{Inh_cell_name}[]/{Inh_drive_synpath} gmax {Inh_drive_gmax} end function set_Ex_inh_gmax(value) // inhibitory synchan gmax in Ex_cell float value // value in nA Ex_inh_gmax = {value}*1e-9 setfield /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} gmax {Ex_inh_gmax} end function set_Inh_inh_gmax(value) // inhibitory synchan gmax in Inh_cell float value // value in nA Inh_inh_gmax = {value}*1e-9 setfield /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} gmax {Inh_inh_gmax} end function set_all_gmax // set all gmax to Ex_ex_gmax, ..., Ex_bg_gmax setfield /Ex_layer/{Ex_cell_name}[]/{Ex_ex_synpath} gmax \ {Ex_ex_gmax} setfield /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} gmax \ {Ex_inh_gmax} setfield /Inh_layer/{Inh_cell_name}[]/{Inh_ex_synpath} gmax \ {Inh_ex_gmax} setfield /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} gmax \ {Inh_inh_gmax} setfield /Ex_layer/{Ex_cell_name}[]/{Ex_drive_synpath} gmax \ {Ex_drive_gmax} setfield /Ex_layer/{Ex_cell_name}[]/{Ex_bg_synpath} gmax \ {Ex_bg_gmax} setfield /Inh_layer/{Inh_cell_name}[]/{Inh_drive_synpath} gmax \ {Inh_drive_gmax} end /* NOTE: Functions to set synchan tau1 and tau2 values should be called only prior to hsolve SETUP. Unlike the case with gmax, which may be changed if followed by a reset, changing the taus of hsolved synchans causes erroneous results. */ function set_all_taus // assume all synchans of one type have same taus setfield /Ex_layer/{Ex_cell_name}[]/{Ex_ex_synpath} tau1 {tau1_ex} \ tau2 {tau2_ex} setfield /Ex_layer/{Ex_cell_name}[]/{Ex_drive_synpath} tau1 {tau1_ex} \ tau2 {tau2_ex} setfield /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} tau1 {tau1_inh} \ tau2 {tau2_inh} setfield /Inh_layer/{Inh_cell_name}[]/{Inh_ex_synpath} tau1 {Inh_tau1_ex} \ tau2 {Inh_tau2_ex} setfield /Inh_layer/{Inh_cell_name}[]/{Inh_drive_synpath} tau1 {tau1_ex}\ tau2 {tau2_ex} setfield /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} tau1 {tau1_inh} \ tau2 {tau2_inh} setfield /Ex_layer/{Ex_cell_name}[]/{Ex_bg_synpath} tau1 {tau1_ex} \ tau2 {tau2_ex} end function set_inh_tau2(tau2) float tau2, tau2_min, tau2_max tau2_inh = tau2 if (tau2_inh_spreadfactor != 0.0) tau2_min = tau2*(1-tau2_inh_spreadfactor) tau2_max = tau2*(1+tau2_inh_spreadfactor) setrandfield /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} \ tau2 -uniform {tau2_min} {tau2_max} setrandfield /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} \ tau2 -uniform {tau2_min} {tau2_max} else setfield /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} tau2 {tau2} setfield /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} tau2 {tau2} end end /***** functions to connect network *****/ /* This is a specialized version of planarconnect where the connection probability is weighted with a probability prob0*exp(-r*r/(sigma*sigma)) where r is the radial distance between source and destination in the x-y plane. Unlike the more general version, it is assumed that all cells in the source network are used as sources. The destination region is defined as a ring between a radius rmin and rmax in the destination network. The sources are all assumed to be spikegen objects, and the destinations to be synchans, or variants such as facsynchans. An example of the ith cell in the source network would be: {src_cell_path}[{i}]{src_spikepath} with src_cell_path = /Ex_layer/{Ex_cell_name} src_spikepath = "soma/spike" An example destination would use: dst_cell_path = /Inh_layer/{Inh_cell_name} dst_synpath = {Inh_ex_synpath} For example: planarconnect_probdecay /Ex_layer/{Ex_cell_name} "soma/spike" {Ex_NX*Ex_NY} \ /Inh_layer/{Inh_cell_name} {Inh_ex_synpath} {Inh_NX*Inh_NY} \ 0.0 {pyr_range} {Ex2Inh_prob} {Ex_sigma} */ function planarconnect_probdecay(src_cell_path, src_spikepath, n_src, \ dst_cell_path, dst_synpath, n_dst, \ rmin, rmax, prob0, sigma) str src, src_cell_path, src_spikepath, dst, dst_cell_path, dst_synpath int n_src, n_dst, i, j float rmin, rmax, prob0, sigma, x, y, dst_x, dst_y, prob, rsqr float decay = 1.0/(sigma*sigma) float rminsqr = rmin*rmin float rmaxsqr = rmax*rmax /* loop over all source cells - this will be all cells in layer */ for (i = 0 ; i < {n_src} ; i = i + 1) src = {src_cell_path} @ "[" @ {i} @ "]/" @ {src_spikepath} x = {getfield {src} x} y = {getfield {src} y} /* loop over all possible destination cells - all in dest layer */ for (j = 0 ; j < {n_dst} ; j = j + 1) dst = {dst_cell_path} @ "[" @ {j} @ "]/" @ {dst_synpath} dst_x = {getfield {dst} x} dst_y = {getfield {dst} y} rsqr = (dst_x - x)*(dst_x - x) + (dst_y - y)*(dst_y - y) if( ({rsqr} >= {rminsqr}) && ({rsqr} <= {rmaxsqr}) ) prob = {prob0}*{exp {-1.0*{rsqr*decay}}} if ({rand 0 1} <= prob) addmsg {src} {dst} SPIKE end end end // dst loop end // src loop end /***** functions to set weights and delays *****/ function set_weights(weight) float weight syn_weight = weight // set the global variable to the new weight if (use_weight_decay) // This option is not used in this series of simulations /* WARNING! Ugly hack ahead: This has been generalized to use volumeweight2 instead of planarweight. But, in this case, I really want a planar distance to be used in the calculation of weight decay in order to avoid the problem of a target on the high apical dendrite. It is easiest to set the z coord to that of soma/spike, in order to ignore this vertical distance. */ /* For another variation of the model, have constant connection probabilities, but set the weights according to an exponential approx to gaussian used in the Ermentrout Flicker model: Rule M, Stoffregen M, Ermentrout (2011) A Model for the Origin and Properties of Flicker-Induced Geometric Phosphenes. PLoS Comput Biol. 7(9): e1002158. doi: 10.1371/journal.pcbi.1002158 */ float Ex_decay_rate = 12500.0 // account for soma/spike at z = 17 um setfield /Ex_layer/{Ex_cell_name}[]/{Ex_ex_synpath} z 17e-6 setfield /Inh_layer/{Inh_cell_name}[]/{Inh_ex_synpath} z 17e-6 // connection range of Inh_cells is more than Ex_cells float Inh_decay_rate = 5000.0 // The source of inhibitory synaptic connections is // bask_4/soma/spike at z = 40 um. setfield /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} z 40e-6 setfield /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} z 40e-6 // syntax: planarweight <source> -decay decay_rate max_weight min_weight volumeweight2 /Ex_layer/{Ex_cell_name}[]/soma/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_ex_synpath} \ -decay {Ex_decay_rate} {weight} 0.0 volumeweight2 /Ex_layer/{Ex_cell_name}[]/soma/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_ex_synpath} \ -decay {Ex_decay_rate} {weight} 0.0 volumeweight2 /Inh_layer/{Inh_cell_name}[]/soma/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} \ -decay {Inh_decay_rate} {weight} 0.0 volumeweight2 /Inh_layer/{Inh_cell_name}[]/soma/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} \ -decay {Inh_decay_rate} {weight} 0.0 else // use fixed weights // The defualt volumeweight /Ex_layer/{Ex_cell_name}[]/soma/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_ex_synpath} \ -fixed {syn_weight} volumeweight /Ex_layer/{Ex_cell_name}[]/soma/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_ex_synpath} \ -fixed {syn_weight} volumeweight /Inh_layer/{Inh_cell_name}[]/soma/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} \ -fixed {syn_weight} volumeweight /Inh_layer/{Inh_cell_name}[]/soma/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} \ -fixed {syn_weight} end echo "All maxium synaptic weights set to "{weight} end /* If the delay is zero, set it as the fixed delay, else use the conduction velocity to calculate delays based on radial distance to the target. For a fixed delay, either planardelay or volumedelay can be used. As axonal conduction velocities are the same in both the vertical direction, and in the horizontal plane, volumedelay should be used to account for the vertical distance traveled to the dendrites. */ function set_delays(delay) float delay prop_delay = delay if (delay == 0.0) planardelay /Ex_layer/{Ex_cell_name}[]/soma/spike -fixed {delay} planardelay /Inh_layer/{Inh_cell_name}[]/soma/spike -fixed {delay} else volumedelay /Ex_layer/{Ex_cell_name}[]/soma/spike -radial {1/delay} volumedelay /Inh_layer/{Inh_cell_name}[]/soma/spike -radial {1/delay} end echo "All propagation delays set to "{delay}" sec/m" end function set_frequency(value) // set Ex_ex average random firing freq float value frequency = value setfield /Ex_layer/{Ex_cell_name}[]/{Ex_bg_synpath} frequency {frequency} end /**** functions to output results ****/ function make_output(rootname) // asc_file to {rootname}_{RUNID}.txt str rootname, filename if ({exists {rootname}}) call {rootname} RESET // this closes and reopens the file delete {rootname} end filename = {rootname} @ "_" @ {RUNID} @ ".txt" create asc_file {rootname} setfield ^ flush 1 leave_open 1 filename {filename} setclock 1 {out_dt} useclock {rootname} 1 end /* This function returns a string to be used for a one-line header at the beginning of an ascii file that contains values of Vm or Ik for each cell in the network, at time steps netview_dt. When binary file output is used with the disk_out object, the file contains information on the network dimensions that are needed for the xview object display. When asc_file is used to generate the network data, this information is provided in a header of the form: #optional_RUNID_string Ntimes start_time dt NX NY SEP_X SEP_Y x0 y0 z0 This header may be read by a data analysis script, such as netview.py. The line must start with "#" and can optionally be followed immediately by any string. Typically this is some identification string generated by the simulation run. The following parameters, separated by blanks or any whitespace, are: * Ntimes - the number of lines in the file, exclusive of the header * start_time - the simulation time for the first data line (default 0) * dt - the time step used for output (netview_dt) * NX, NY - the integer dimensions of the network * SEP_X, SEP_Y - the x,y distances between cells (optional) * x0, y0, z0 - the location of the compartment (data source) relative to the cell origin (often ignored) A typical header generated by this simulation is: #B0003 5000 0.0 0.0002 48 48 4e-05 4e-05 0.0 0.0 0.0 */ function make_header(diskpath) str diskpath int Ntimes = {round {tmax/netview_dt}} // outputs t = 0 thru tmax - netview_dt str header_str = "#" @ {RUNID} @ " " @ {Ntimes} @ " 0.0 " @ {netview_dt} @ " " if(diskpath == {net_efile}) header_str = {header_str} @ {Ex_NX} @ " " @ {Ex_NY} @ " " @ {Ex_SEP_X} @ \ " " @ {Ex_SEP_Y} @ " 0.0 0.0 0.0" elif(diskpath == {net_ifile}) header_str = {header_str} @ {Inh_NX} @ " " @ {Inh_NY} @ " " @ {Inh_SEP_X} @ \ " " @ {Inh_SEP_Y} @ " 0.0 0.0 0.0" elif(diskpath == {net_EPSC_file}) header_str = {header_str} @ {Ex_NX} @ " " @ {Ex_NY} @ " " @ {Ex_SEP_X} @ \ " " @ {Ex_SEP_Y} @ " 0.0 0.0 0.0" else echo "Wrong file name root!" header_str = "" end return {header_str} end /* Create disk_out element to write netview data to a binary or ascii file */ function do_disk_out(diskpath,srcpath, srcelement, field) str name, diskpath, srcpath, srcelement, field, filename if ({exists /output/{diskpath}}) delete /output/{diskpath} end if(binary_file==0) // use asc_file filename = {diskpath} @ "_" @ {RUNID} @ ".txt" create asc_file /output/{diskpath} setfield /output/{diskpath} leave_open 1 flush 0 filename {filename} setfield /output/{diskpath} float_format %.3g notime 1 if(write_asc_header==1) setfield /output/{diskpath} append 1 call /output/{diskpath} OUT_OPEN call /output/{diskpath} OUT_WRITE {make_header {diskpath}} reset end else // use disk_out to make FMT1 binary file filename = {diskpath} @ "_" @ {RUNID} @ ".dat" create disk_out /output/{diskpath} setfield /output/{diskpath} leave_open 1 flush 0 filename {filename} end //if(binary_file==0) if({hflag} && {hsolve_chanmode > 1}) foreach name ({getelementlist {srcpath}}) addmsg {name}/solver /output/{diskpath} SAVE \ {findsolvefield {name}/solver {name}/{srcelement} {field}} end else foreach name ({getelementlist {srcpath}}) addmsg {name}/{srcelement} /output/{diskpath} SAVE {field} end end end function do_network_out if(netview_output) setclock 2 {netview_dt} do_disk_out {net_efile} /Ex_layer/{Ex_cell_name}[] soma Vm useclock /output/{net_efile} 2 do_disk_out {net_ifile} /Inh_layer/{Inh_cell_name}[] soma Vm useclock /output/{net_ifile} 2 end if (EPSC_output) do_disk_out {net_EPSC_file} /Ex_layer/{Ex_cell_name}[] {Ex_ex_synpath} Ik setclock 2 {netview_dt} useclock /output/{net_EPSC_file} 2 end end /* ------------------------------------------------------------------ Create a calculator object to hold summed Ex_ex currents, and then send all Ex_ex synaptic currents to it for summation NOTE: Previous versions of make_EPSCsummer also summed the excitatory currents from the thalamic input drive. Here, the effect of any input drive would be indirect through propagation of its effect from cell to cell via synaptic connections. ------------------------------------------------------------------- */ str data_source = "/EPSCsummer" // data_source sums Ex_cell ex currents function make_EPSCsummer // data_source sums Ex_cell ex currents int i create calculator {data_source} useclock {data_source} 1 // the clock for out_dt for (i=0; i < Ex_NX*Ex_NY; i = i + 1) if({hflag} && {hsolve_chanmode > 1}) addmsg /Ex_layer/{Ex_cell_name}[{i}]/solver {data_source} SUM \ {findsolvefield /Ex_layer/{Ex_cell_name}[{i}]/solver \ {Ex_ex_synpath} Ik} else addmsg /Ex_layer/{Ex_cell_name}[{i}]/{Ex_ex_synpath} \ {data_source} SUM Ik // addmsg /Ex_layer/{Ex_cell_name}[{i}]/{Ex_drive_synpath} \ // {data_source} SUM Ik end end end function do_EPSCsum_out if (calc_EPSCsum) if (! {exists {data_source}}) make_EPSCsummer end make_output {EPSC_sum_file} addmsg {data_source} {EPSC_sum_file} SAVE output end end function do_run_summary str filename = {sum_file} @ "_" @ {RUNID} @ ".txt" openfile {filename} w writefile {filename} "Script:" {script_name} " RUNID:" {RUNID} " seed:" {seed} \ " date:" {getdate} writefile {filename} "tmax:" {tmax} " dt:" {dt} " out_dt:" {out_dt} \ " netview_dt:" {netview_dt} writefile {filename} "EPSC_output:" {EPSC_output} " netview_output:" {netview_output} writefile {filename} "Ex_NX:" {Ex_NX} " Ex_NY:" {Ex_NY} " Inh_NX:" \ {Inh_NX} " Inh_NY:" {Inh_NY} writefile {filename} "Ex_SEP_X:" {Ex_SEP_X} " Ex_SEP_Y:" {Ex_SEP_Y} \ " Inh_SEP_X:" {Inh_SEP_X} " Inh_SEP_Y:" {Inh_SEP_Y} writefile {filename} "Ninputs:" {Ninputs} " bg Ex freq:" {frequency} \ " bg Ex gmax:" {Ex_bg_gmax} writefile {filename} "================== Network parameters =================" writefile {filename} "Ex_ex_gmax:" {Ex_ex_gmax} " Ex_inh_gmax:" {Ex_inh_gmax} \ " Inh_ex_gmax:" {Inh_ex_gmax} " Inh_inh_gmax:" {Inh_inh_gmax} writefile {filename} "tau1_ex:" {tau1_ex} " tau2_ex:" {tau2_ex} \ " tau1_inh:" {tau1_inh} " tau2_inh:" {tau2_inh} writefile {filename} "syn_weight: " {syn_weight} \ " prop_delay:" {prop_delay} " default drive weight:" {drive_weight} writefile {filename} "Ex_drive_gmax: " {Ex_drive_gmax} \ " Inh_drive_gmax: " {Inh_drive_gmax} /* The code below is specific to the input model -- see MGBv_input.g */ writefile {filename} "MGBv input delay: " {input_delay} \ " MGBv input jitter :" {input_jitter} writefile {filename} "input_spread : " {input_spread} \ " connect_network :" {connect_network} "use_weight_decay: " \ {use_weight_decay} writefile {filename} "================== Thalamic inputs =================" writefile {filename} "Input" " Row " "Frequency" " State" " Weight" \ " Delay" " Width" " Period" int input_num, input_row str input_source = "/MGBv" // Name of the array of input elements float input_freq, delay, width, interval, drive_weight str pulse_src, spike_out str toggle_state floatformat %10.3f for (input_num = 1; input_num <= {Ninputs}; input_num= input_num +1) pulse_src = {input_source} @ "[" @ {input_num} @ "]" @ "/spikepulse" spike_out = {input_source} @ "[" @ {input_num} @ "]" @ "/soma/spike" input_row = \ {getfield {{input_source} @ "[" @ {input_num} @ "]"} input_row} input_freq = \ {getfield {{input_source} @ "[" @ {input_num} @ "]"} input_freq} drive_weight = \ {getfield {{input_source} @ "[" @ {input_num} @ "]"} output_weight} delay = {getfield {pulse_src} delay1 } width = {getfield {pulse_src} width1} interval = {getfield {pulse_src} delay1} + {getfield {pulse_src} delay2} // get the spiketoggle state toggle_state = "OFF" if ({getfield {pulse_src} level1} > 0.5) toggle_state = "ON" end writefile {filename} {input_num} {input_row} -n -format "%5s" writefile {filename} {input_freq} {toggle_state} {drive_weight} \ {delay} {width} {interval} -format %10s end writefile {filename} "----------------------------------------------------------" writefile {filename} "Notes:" closefile {filename} floatformat %0.10g end function change_RUNID(value) str value RUNID = value // Set up new file names for output do_network_out do_EPSCsum_out end function step_tmax echo "dt = "{getclock 0}" tmax = "{tmax} echo "RUNID: " {RUNID} echo "START: " {getdate} step {tmax} -time echo "END : " {getdate} do_run_summary end //============================================================= // Functions to set up the network //============================================================= function make_prototypes /* Step 1: Assemble the components to build the prototype cell under the neutral element /library. This is done by including "prododefs.g" before using the function make_prototypes. */ /* Step 2: Create the prototype cell specified in 'cellfile', using readcell. This should set up the apropriate synchans in specified compartments, with a spikegen element "spike" attached to the soma. This will be done in /library, where it will be available to be copied into a network In this case there are two types of cells "Ex_cell" and "Inh_cell". */ readcell {Ex_cellfile} /library/{Ex_cell_name} readcell {Inh_cellfile} /library/{Inh_cell_name} // In this case, use different values from the defaults in 'cellfile' setfield /library/{Ex_cell_name}/{Ex_ex_synpath} gmax {Ex_ex_gmax} setfield /library/{Ex_cell_name}/{Ex_inh_synpath} gmax {Ex_inh_gmax} setfield /library/{Ex_cell_name}/{Ex_drive_synpath} gmax {Ex_ex_gmax} setfield /library/{Ex_cell_name}/soma/spike thresh 0 abs_refract 0.002 \ output_amp 1 // Note: the Ex-cell has wider and slower spikes, so use larger abs_refract setfield /library/{Inh_cell_name}/{Inh_ex_synpath} gmax {Inh_ex_gmax} setfield /library/{Inh_cell_name}/{Inh_inh_synpath} gmax {Inh_inh_gmax} setfield /library/{Inh_cell_name}/{Inh_drive_synpath} gmax {Inh_ex_gmax} setfield /library/{Inh_cell_name}/soma/spike thresh 0 abs_refract 0.001 \ output_amp 1 end /***** functions to set up the network *****/ function make_network /* Step 3 - make a 2D array of cells with copies of /library/cell */ // usage: createmap source dest Nx Ny -delta dx dy [-origin x y] /* There will be NX cells along the x-direction, separated by SEP_X, and NY cells along the y-direction, separated by SEP_Y. The default origin is (0, 0). This will be the coordinates of cell[0]. The last cell, cell[{NX*NY-1}], will be at (NX*SEP_X -1, NY*SEP_Y-1). */ createmap /library/{Ex_cell_name} /Ex_layer {Ex_NX} {Ex_NY} \ -delta {Ex_SEP_X} {Ex_SEP_Y} // Displace the /Inh_layer origin to be in between Ex_cells createmap /library/{Inh_cell_name} /Inh_layer {Inh_NX} {Inh_NY} \ -delta {Inh_SEP_X} {Inh_SEP_Y} -origin {Ex_SEP_X/2} {Ex_SEP_Y/2} end // function make_network function connect_cells /* Step 4: Now connect them up with planarconnect. Usage: * planarconnect source-path destination-path * [-relative] * [-sourcemask {box,ellipse} xmin ymin xmax ymax] * [-sourcehole {box,ellipse} xmin ymin xmax ymax] * [-destmask {box,ellipse} xmin ymin xmax ymax] * [-desthole {box,ellipse} xmin ymin xmax ymax] * [-probability p] */ /* Connect each source spike generator to target synchans within the specified range. Set the ellipse axes or box size just higher than the cell spacing, to be sure cells are included. To connect to nearest neighbors and the 4 diagonal neighbors, use a box: -destmask box {-SEP_X*1.01} {-SEP_Y*1.01} {SEP_X*1.01} {SEP_Y*1.01} For all-to-all connections with a 10% probability, set both the sourcemask and the destmask to have a range much greater than NX*SEP_X using options -destmask box -1 -1 1 1 \ -probability 0.1 Set desthole to exclude the source cell, to prevent self-connections. In an earlier version, the destination was divided into three rings, with decreasing connection probabilities. The same function is used for both Ex_cells and Inh_cells. In this version, with the flag 'use_prob_decay = 1', the connection probability is weighted with a probability exp(-d*d/(sigma*sigma)) where r is the radial distance between source and destination in the x-y plane. */ /* Typical values from experiment are: float Ex2Ex_prob = 0.1 float Ex2Inh_prob = 0.3 float Inh2Ex_prob = 0.4 float Inh2Inh_prob = 0.4 // (a guess, data not available) */ /* Default values used in this simulation */ float Ex2Ex_prob = 0.15 float Ex2Inh_prob = 0.45 float Inh2Ex_prob = 0.6 float Inh2Inh_prob = 0.6 // (a guess, data not available) // distance at which number of targets cells becomes very small float pyr_range = 25*Ex_SEP_X float bask_range = 25*Ex_SEP_X // Ex_layer cells connect to excitatory synchans if (use_prob_decay) float Ex_sigma = 10.0*Ex_SEP_X // values from K Yaun SfN 2008 poster fit float Inh_sigma = 10.0*Ex_SEP_X planarconnect_probdecay /Ex_layer/{Ex_cell_name} "soma/spike" {Ex_NX*Ex_NY} \ /Ex_layer/{Ex_cell_name} {Ex_ex_synpath} {Ex_NX*Ex_NY} \ {0.5*Ex_SEP_X} {pyr_range} {Ex2Ex_prob} {Ex_sigma} // Inh_ex connections don't need an intial desthole, so rmin = 0.0 planarconnect_probdecay /Ex_layer/{Ex_cell_name} "soma/spike" {Ex_NX*Ex_NY} \ /Inh_layer/{Inh_cell_name} {Inh_ex_synpath} {Inh_NX*Inh_NY} \ 0.0 {pyr_range} {Ex2Inh_prob} {Ex_sigma} planarconnect_probdecay /Inh_layer/{Inh_cell_name} "soma/spike" \ {Inh_NX*Inh_NY} /Ex_layer/{Ex_cell_name} {Ex_inh_synpath} {Ex_NX*Ex_NY} \ 0.0 {bask_range} {Inh2Ex_prob} {Inh_sigma} planarconnect_probdecay /Inh_layer/{Inh_cell_name} "soma/spike" {Inh_NX*Inh_NY} \ /Inh_layer/{Inh_cell_name} {Inh_inh_synpath} {Inh_NX*Inh_NY} \ {Inh_SEP_X*0.5} {bask_range} {Inh2Inh_prob} {Inh_sigma} else // use a fixed range and probablity of connections volumeconnect /Ex_layer/{Ex_cell_name}[]/soma/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_ex_synpath} \ -relative \ // Destination coordinates are measured relative to source -sourcemask box -1 -1 -1 1 1 1 \ // Larger than source area ==> all cells -desthole box {-Ex_SEP_X*0.5} {-Ex_SEP_Y*0.5} {-Ex_SEP_Z*0.5} \ {Ex_SEP_X*0.5} {Ex_SEP_Y*0.5} {Ex_SEP_Z*0.5} \ -destmask ellipsoid 0 0 0 {pyr_range} {pyr_range} {Ex_SEP_Z*0.5} \ -probability {Ex2Ex_prob} // Inh_ex connections don't need an intial desthole volumeconnect /Ex_layer/{Ex_cell_name}[]/soma/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_ex_synpath} \ -relative \ // Destination coordinates are measured relative to source -sourcemask box -1 -1 -1 1 1 1 \ // Larger than source area ==> all cells -destmask ellipsoid 0 0 0 {pyr_range} {pyr_range} {Ex_SEP_Z*0.5} \ -probability {Ex2Inh_prob} // Inh_layer cells connect to inhibitory synchans volumeconnect /Inh_layer/{Inh_cell_name}[]/soma/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} \ -relative \ // Destination coordinates are measured relative to source -sourcemask box -1 -1 -1 1 1 1 \ // Larger than source area ==> all cells -destmask ellipsoid 0 0 0 {bask_range} {bask_range} {Inh_SEP_Z*0.5} \ -desthole box {-Inh_SEP_X*0.5} {-Inh_SEP_Y*0.5} {-Inh_SEP_Z*0.5} \ {Inh_SEP_X*0.5} {Inh_SEP_Y*0.5} {Inh_SEP_Z*0.5} \ -probability {Inh2Inh_prob} // Inh_layer cells connect to excitatory synchans // Ex_inh connections don't need an intial desthole volumeconnect /Inh_layer/{Inh_cell_name}[]/soma/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} \ {Inh_SEP_Z*0.5} -relative \ // Destination coordinates are measured relative to source -sourcemask box -1 -1 -1 1 1 1 \ // Larger than source area ==> all cells -destmask ellipsoid 0 0 0 {bask_range} {bask_range} {Inh_SEP_Z*0.5} \ -probability {InheEx_prob} end // if-else /* Step 5: Set the axonal propagation delay and weight fields of the target synchan synapses for all spikegens. To scale the delays according to distance instead of using a fixed delay, use planardelay /network/cell[]/soma/spike -radial {cond_vel} and change dialogs in graphics.g to set cond_vel. This would be appropriate when connections are made to more distant cells. Other options of planardelay and planarweight allow some randomized variations in the delay and weight. This is now done in the main simulation section, following connect_cells. */ end // function connect_cells // Utility functions to calculate statistics function print_avg_syn_number int n int num_Ex_ex = 0 int num_Ex_inh = 0 for (n=0; n < Ex_NX*Ex_NY; n=n+1) num_Ex_ex = num_Ex_ex + {getsyncount \ /Ex_layer/{Ex_cell_name}[{n}]/{Ex_ex_synpath}} num_Ex_inh = num_Ex_inh + {getsyncount \ /Ex_layer/{Ex_cell_name}[{n}]/{Ex_inh_synpath}} end num_Ex_ex = num_Ex_ex/(Ex_NX*Ex_NY) num_Ex_inh = num_Ex_inh/(Ex_NX*Ex_NY) int num_Inh_ex = 0 int num_Inh_inh = 0 for (n=0; n < Inh_NX*Inh_NY; n=n+1) num_Inh_ex = num_Inh_ex + {getsyncount \ /Inh_layer/{Inh_cell_name}[{n}]/{Inh_ex_synpath}} num_Inh_inh = num_Inh_inh + {getsyncount \ /Inh_layer/{Inh_cell_name}[{n}]/{Inh_inh_synpath}} end num_Inh_ex = num_Inh_ex/(Inh_NX*Inh_NY) num_Inh_inh = num_Inh_inh/(Inh_NX*Inh_NY) echo "Average number of Ex_ex synapses per cell: " {num_Ex_ex} echo "Average number of Ex_inh synapses per cell: " {num_Ex_inh} echo "Average number of Inh_ex synapses per cell: " {num_Inh_ex} echo "Average number of Inh_inh synapses per cell: " {num_Inh_inh} end // print_avg_syn_number // This is not used in the default simulation, and has not been well tested function normalize_network_weights // duplicate the code in print_avg_syn_number to get avg # synapses/cell int n int num_Ex_ex = 0 int num_Ex_inh = 0 for (n=0; n < Ex_NX*Ex_NY; n=n+1) num_Ex_ex = num_Ex_ex + {getsyncount \ /Ex_layer/{Ex_cell_name}[{n}]/{Ex_ex_synpath}} num_Ex_inh = num_Ex_inh + {getsyncount \ /Ex_layer/{Ex_cell_name}[{n}]/{Ex_inh_synpath}} end num_Ex_ex = num_Ex_ex/(Ex_NX*Ex_NY) num_Ex_inh = num_Ex_inh/(Ex_NX*Ex_NY) int num_Inh_ex = 0 int num_Inh_inh = 0 for (n=0; n < Inh_NX*Inh_NY; n=n+1) num_Inh_ex = num_Inh_ex + {getsyncount \ /Inh_layer/{Inh_cell_name}[{n}]/{Inh_ex_synpath}} num_Inh_inh = num_Inh_inh + {getsyncount \ /Inh_layer/{Inh_cell_name}[{n}]/{Inh_inh_synpath}} end num_Inh_ex = num_Inh_ex/(Inh_NX*Inh_NY) num_Inh_inh = num_Inh_inh/(Inh_NX*Inh_NY) // normalizeweights source target -gaussian mean sd min max normalizeweights /Ex_layer/{Ex_cell_name}[]/soma/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_ex_synpath} \ -gaussian {num_Ex_ex} {0.1*num_Ex_ex} 0 {0.2*num_Ex_ex} normalizeweights /Ex_layer/{Ex_cell_name}[]/soma/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_ex_synpath} \ -gaussian {num_Inh_ex} {0.1*num_Inh_ex} 0 {0.2*num_Inh_ex} normalizeweights /Inh_layer/{Inh_cell_name}[]/soma/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_inh_synpath} \ -gaussian {num_Ex_inh} {0.1*num_Ex_inh} 0 {0.2*num_Ex_inh} normalizeweights /Inh_layer/{Inh_cell_name}[]/soma/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_inh_synpath} \ -gaussian {num_Inh_inh} {0.1*num_Inh_inh} 0 {0.2*num_Inh_inh} end //=============================== // Main simulation section //=============================== setclock 0 {dt} // set the simulation clock /* Including the protodefs file creates prototypes of the channels, and other cellular components under the neutral element '/library'. Calling the function 'make_prototypes', defined earlier in this script, uses these and the cell reader to add the cells. */ include protodefs.g // Now /library contains prototype channels, compartments, spikegen make_prototypes // This adds the prototype cells to /library make_network // Copy cells into network layers // make_network should do some of this, but set all synchan gmax values set_all_gmax /* synchan tau values should not be changed after hsolve SETUP */ // Change the synchan tau1 and tau2 from the values used in protodefs set_all_taus // Give a range of the inhibitory tau2 if tau2_inh_spreadfactor != 0.0 set_inh_tau2 {tau2_inh} // set the random background excitation frequency set_frequency {frequency} /* Setting up hsolve for a network requires setting up a solver for one cell of each type in the network and then duplicating the solvers. The procedure is described in the advanced tutorial 'Simulations with GENESIS using hsolve by Hugo Cornelis' from genesis-sim.org/GENESIS/UGTD/Tutorials/advanced-tutorials */ if(hflag) pushe /Ex_layer/pyr_4[0] create hsolve solver setmethod . 11 // Use Crank-Nicholson setfield solver chanmode {hsolve_chanmode} path "../[][TYPE=compartment]" call solver SETUP int i for (i = 1 ; i < {Ex_NX*Ex_NY} ; i = i + 1) call solver DUPLICATE \ /Ex_layer/pyr_4[{i}]/solver ../##[][TYPE=compartment] setfield /Ex_layer/pyr_4[{i}]/solver \ x {getfield /Ex_layer/pyr_4[{i}]/soma x} \ y {getfield /Ex_layer/pyr_4[{i}]/soma y} \ z {getfield /Ex_layer/pyr_4[{i}]/soma z} end pope pushe /Inh_layer/bask_4[0] create hsolve solver setmethod . 11 // see if this works setfield solver chanmode {hsolve_chanmode} path "../[][TYPE=compartment]" call solver SETUP int i for (i = 1 ; i < {Inh_NX*Inh_NY} ; i = i + 1) call solver DUPLICATE \ /Inh_layer/bask_4[{i}]/solver ../##[][TYPE=compartment] setfield /Inh_layer/bask_4[{i}]/solver \ x {getfield /Inh_layer/bask_4[{i}]/soma x} \ y {getfield /Inh_layer/bask_4[{i}]/soma y} \ z {getfield /Inh_layer/bask_4[{i}]/soma z} end pope end // Now connect them if (connect_network) if (debug) echo "Starting connection set up: " {getdate} end connect_cells // connect up the cells in the network layers if (debug) echo "Finished connection set up: " {getdate} end end // set weights and delays set_weights {syn_weight} /* If the delay is zero, set it as the fixed delay, else use the conduction velocity and calculate delays based on radial distance to target */ if (prop_delay == 0.0) planardelay /Ex_layer/{Ex_cell_name}[]/soma/spike -fixed {prop_delay} planardelay /Inh_layer/{Inh_cell_name}[]/soma/spike -fixed {prop_delay} else planardelay /Ex_layer/{Ex_cell_name}[]/soma/spike -radial {1/prop_delay} planardelay /Inh_layer/{Inh_cell_name}[]/soma/spike -radial {1/prop_delay} end /* Optionally, normalize the weights using the average number of synapses per synchan, so that edge cells with fewer synapses will get a compensating weight increase. This option has not been well tested. */ if (normalize_wts) normalize_network_weights end /* Set up the inputs to the network. Depending on the type of input to be used, include the appropriate file for defining the functions make_inputs and connect_inputs. simple_inputs.g recognizes the input_types "pulsed_spiketrain" and "pulsed_randomspike", and the patterns "row" (the default), "line" and "box". */ include simple_inputs.g /* Other specialized inputs that require other files which are under development ----- if (input_type == "MGBv") echo "Using MGBv cell model input" include MGB-protodefs.g // functions to create MGBv cell prototypes include MGBv_input2-5.g // functions to provide inputs to the net elif (input_type == "pulsed_delta_V" || input_type == "pulsed_zaxis_inject") echo "Using fMRI pulse input" include fMRI_input.g else echo "No input_type was specified!" quit end --------------- */ make_inputs 220.0 // Create array of network inputs starting at freq f0 connect_inputs // Connect the inputs to the network setall_driveweights {drive_weight} // Initialize the weights of input drive if (graphics) // include the graphics functions include graphics2-5.g // for fMRI pulse input, include fMRI_input_graphics.g instead include input_graphics2-5.g // GUI for controlling inputs // make the control panel make_control make_input_control // make the graph to display soma Vm and pass messages to the graph make_Vmgraph // optionally, make a graph to display synaptic currents from network make_Ikgraph make_MGBv_Vmgraph // If I use a slower clock than 0, I should do for all the other plots // useclock /data/voltage 1 setclock 1 {out_dt} if (netview) make_netview setclock 2 {netview_dt} useclock /Ex_netview/draw/view 2 useclock /Inh_netview/draw/view 2 end colorize make_graph_messages end // Create disk_out elements /output/{net_efile}, {net_ifile}, {net_EPSC_file} do_network_out // if (calc_EPSCsum), set up the calculator, messages, and file for summed EPSCs do_EPSCsum_out // check // reset if (debug) echo "Network of "{Ex_NX}" by "{Ex_NY}" excitatory cells with separations" \ {Ex_SEP_X}" by "{Ex_SEP_Y} echo "and "{Inh_NX}" by "{Inh_NY}" inhibitory cells with separations" \ {Inh_SEP_X}" by "{Inh_SEP_Y} echo "Random number generator seed initialized to: " {seed} echo print_avg_syn_number end if(batch) // set up the inputs for the default simulation with two inputs: // Row 12 - 220Hz, Row 36 - 440 Hz set_frequency 0.0 // No background excitation setfield /MGBv[5]/spikepulse level1 1.0 setfield /MGBv[5]/spikepulse/spike abs_refract {1.0/220.0} setfield /MGBv[29]/spikepulse level1 1.0 setfield /MGBv[29]/spikepulse/spike abs_refract {1.0/440.0} reset reset step_tmax end