// simple_inputs.g - used by ACnet2-default.g and variants str input_source = "/MGBv" // Name of the array of input elements echo " input_source = "{input_source} /* The following global variables are defined in the ACnet network script: int Ninputs // number of auditory inputs // approx 1 mm/octave - gives integer rows/octave float octave_distance = 0.96e-3 float Ex_SEP_Y // separation between rows of Ex cells int input_spread // input to row_num +/- input_spread float spike_jitter = 0.0005 // 0.5 msec jitter in thalamic inputs or spike_jitter = 0.0 float input_delay = 0.0 // seconds float input_jitter = 0.0 str input_type // "pulsed_spiketrain", "pulsed_randomspike", "MGBv" str input_pattern // == "row", "line", "box" This version also needs Ex_SEP_X, Inh_SEP_X, Inh_SEP_Y */ int rows_per_octave = {round {octave_distance/Ex_SEP_Y}} /* Input target rows are numbered 1 through Ninputs, and cell rows are numbered 0 through Ex_NY - 1. The first and last one-third octave of the cell rows do not receive MGBv input, so the cell row number is offset from the input row by input_offset. */ int input_offset = {round {rows_per_octave/3.0}} - 1 // Pulsed spike generator -- for constant input, use pulsewidth >= tmax float pulse_width = 0.05 // width of pulse float pulse_delay = 0.05 // delay before start of pulse float pulse_interval = 0.15 // time from start of pulse to next (period) float spikefreq = 110 // just to initialize the dialog /* Default input conduction delay and jitter - the many targets of a single MGBv cell will receive a spike with delay ranging from input_delay*(1 - input_jitter) to input_delay*(1 + input_jitter) This may be used to reduce the correlation between the inputs to the target rows. */ // These are set in the main script // float input_delay = 0.0 // seconds // float input_jitter = 0.0 // float spike_jitter = 0.0005 // 0.5 msec jitter in thalamic inputs //=============================== // Function Definitions //=============================== /* Functions to create the MGBv cells that will provide the inputs In this case the "cells" are spikegens controlled by pulsegens */ function make_MGBvcell(path) str path // The full MGBvcell model would have MGBvcell parameters here // Pulsed spike generator -- for constant input, use pulsewidth >= tmax // these will get changed float pulse_width = {tmax} // width of pulse float pulse_delay = 0 // delay before start of pulse float pulse_interval = {tmax} // interval before next pulse float spikefreq = 110 // Hz. // initial value of frequency // This parameter is used for the full MGBvcell model // float spike_weight = 8 /* Create the basic cell as a container for the pulsegen and spikegen */ create neutral {path} // add fields to keep the target row, frequency and weight addfield {path} input_row setfield {path} input_row 0 // just to initialize it addfield {path} dest_row setfield {path} dest_row 0 // just to initialize it addfield {path} input_freq setfield {path} input_freq {spikefreq} addfield {path} output_weight setfield {path} output_weight 1.0 create pulsegen {path}/spikepulse // Make a periodic pulse to control spikes // make a spikegen to deliver the spikes create spikegen {path}/spikepulse/spike setfield {path}/spikepulse/spike thresh 0.5 setfield {path}/spikepulse width1 {pulse_width} delay1 {pulse_delay} \ baselevel 0.0 trig_mode 0 delay2 {pulse_interval - pulse_delay} width2 0 if (input_type == "pulsed_spiketrain") if (debug >= 1) echo "Using simple pulsed spiketrain input" end // set the spikegen refractory period = 1/freq setfield {path}/spikepulse/spike abs_refract {1.0/spikefreq} addmsg {path}/spikepulse {path}/spikepulse/spike INPUT output elif (input_type == "pulsed_randomspike") if (debug >= 1) echo "Using pulsed random (Poisson) spike input" end create randomspike {path}/randspike setfield {path}/spikepulse/spike abs_refract 0.0009 // 1100 Hz max // Intialize randomspike amplitude to zero setfield {path}/randspike min_amp 0.0 max_amp 0.0 \ reset 1 reset_value 0 rate {spikefreq} // gate the randomspike by setting min and max to pulsegen output addmsg {path}/spikepulse {path}/randspike MINMAX output output // This will gate the state of the randomspike, but not prevent it // from registering events. The state should be sent to the spikegen addmsg {path}/randspike {path}/spikepulse/spike INPUT state else echo "No input_type was specified!" quit end end // function make_MGBvcell function set_input_freq(cell, input_freq) str cell; float freq, input_freq setfield {cell} input_freq {input_freq} freq = input_freq if ({input_freq} > 1000) freq = 1000 end float abs_refract = 1e6 // A very low frequency if ({freq} > 1.0e-6) abs_refract = 1.0/freq end if (input_type == "pulsed_spiketrain") setfield {cell}/spikepulse/spike abs_refract {abs_refract} elif (input_type == "pulsed_randomspike") setfield {cell}/randspike rate {freq} else echo "No input_type was specified!" return end end // set_input_freq(cell, freq) // Set parameters for spike train pulses function set_pulse_params(input_num, frequency, delay, width, interval) int input_num float frequency, delay, width, interval, abs_refract setfield {input_source}[{input_num}]/spikepulse width1 {width} delay1 \ {delay} baselevel 0.0 trig_mode 0 delay2 {interval - delay} width2 0 // free run mode with very long delay for 2nd pulse (non-repetitive) // level1 is set by GUI spiketoggle function, or by a batch mode command // set the abs_refract of the spikegen to spike every 1/frequency set_input_freq {input_source}[{input_num}] {frequency} end function set_spiketrain_weight(input_num, weight) int input_num float weight setfield {input_source}[{input_num}] output_weight {weight} // Now set the weights of all network cell targets (not Inh feedback) // The optional 2nd arg for target is useful here planarweight {input_source}[{input_num}]/spikepulse/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_drive_synpath} -fixed {weight} planarweight {input_source}[{input_num}]/spikepulse/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_drive_synpath} -fixed {weight} end function setall_driveweights(weight) int i float weight for (i=1; i <= {Ninputs}; i=i+1) set_spiketrain_weight {i} {weight} end end /* Set up the circuitry to provide spike trains to the network */ function make_input_source(input_num) int input_num float x0, y0, z0, y x0 = 0; y0 = input_offset*Ex_SEP_Y; z0 =0; make_MGBvcell {input_source}[{input_num}] // Set the separations of the vertical array of inputs to that of network y = y0 + input_num*Ex_SEP_Y setfield {input_source}[{input_num}] x {x0} y {y} z {z0} setfield {input_source}[{input_num}] dest_row {input_num + input_offset} end // function make_input_source /* make_inputs and connect_inputs are the two functions called by ACnet2 to set up the inputs to the network */ // Make array of pulsed inputs ({input_source}[{input_num}]) and initialize function make_inputs(f0) int i float f0, freq f0 = 110 if ({argc} == 1) f0 = {argv 1} end for (i=1; i <= {Ninputs}; i=i+1) make_input_source {i} // This assignment can be changed as needed freq = f0*{pow 2.0 {1.0*(i-1)/rows_per_octave}} set_pulse_params {i} {freq} {pulse_delay} {pulse_width} {pulse_interval} if (debug > 1) echo "source "{i}" freq = "{freq} end end end // function make_inputs function set_input_delays(delay, jitter_factor) // give a random delay unfiformly distributed between // delay*(1 - jitter_factor) and delay*(1 + jitter_factor) float delay, jitter_factor // be careful to do it for just the network targets planardelay /MGBv[]/spikepulse/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_drive_synpath} \ -fixed {delay} -uniform {jitter_factor} planardelay /MGBv[]/spikepulse/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_drive_synpath} \ -fixed {delay} -uniform {jitter_factor} end // Asume that spike_jitter < 1.0/input_freq (e.g. 2 kHz for 0.5 msec jitter) function add_spike_jitter int i float st for (i=1; i <= {Ninputs}; i=i+1) st = 1.0/{getfield {input_source}[{i}] input_freq} setrandfield {input_source}[{i}]/spikepulse/spike abs_refract \ -gaussian {st} {spike_jitter} end end function make_jitter_adder create script_out /jitter_adder enable /jitter_adder useclock /jitter_adder 2 // same as netview_dt setfield /jitter_adder command "add_spike_jitter" end /* --------------- Notes on function connect_inputs ------------------ The default input_pattern = "row" makes connections to all cells on the specified row. If input_spread > 0, connections with an exponentially decaying probablility will be made to adjacent rows +/- input_spread. The input pattern "box" is a specialized input that is applied to each cell in a box that is defined by the integer variables: int Ex_NX0_in // lower left corner x index int Ex_NY0_in // lower left corner y index int Ex_NXlen_in // width of the box int Ex_NYlen_in // height of the box and similar variables Inh_NX0_in, Inh_NY0_in, Inh_NXlen_in, Inh_NYlen_in for the network of inhibitory cells. A "line" input is merely a box with a height (Ex_NYlen_in or Inh_NYlen_in) = 1. It differs from a single row input because it excludes cells at the ends of the row. */ function connect_inputs /* For special cases "line" or "box", I want connections from the one input channel to go to all cells in a rectangular block defined by the values of Ex_NX0_in, Ex_NY0_in, etc. defined below. Note that the Inh cells are displaced from Ex by Ex_SEP_X/2, Ex_SEP_Y/2, with twice the spacing. The x coord of the Ex_cell apical1 compartment (Ex_drive_synpath) is displaced from the grid location by -125 um, as it is at the end of the oblique apical dendrite. For the symmetric compartment version of the cell, it is at -75 um. For "row" input, all cells on the row will be targets, so apical1_x_offset is not needed. Also, note the that '-relative' option is not used here. */ float apical1_x_offset = -125e-6 float xmin, ymin, xmax, ymax if (input_pattern == "row") /* Use code from MGBv_input2-5.g to provide input_spread */ int i, k float target_y, y, ymin, ymax, prob, max_prob // number of rows below and above "target row" of input spread int kspread = input_spread // defined in main ACnet script int kmax = kspread // number of rows to go above target row int kmin = -1*kspread // number of rows to go below target row /* Target rows are numbered 1 through Ninputs, and cell rows are numbered 0 through Ex_NY - 1. The first and last one-third octave of the cell rows do not receive MGBv input, so the cell row number is offset from the input row by input_offset. In addition, the y coord of the Ex_cell apical1 compartment (Ex_drive_synpath) is displaced from the grid location by 17 um for the symmetric compartment version of the cell, but not for the asymmetric. */ float apical1_offset = 0.0 max_prob = 1.1 // just to be sure that all target row cells get input // Below, the exponential decay of probability is set to give // prob(kmax) = exp(-2.0), to make it independent of Ex_SEP_Y float decay_rate if (kspread == 0) decay_rate = 1.0 // avoid a singularity if no spread else decay_rate = 2.0/kspread end for (i=1; i <= {Ninputs}; i=i+1) // loop over inputs target_y = {getfield {input_source}[{i}] dest_row} * Ex_SEP_Y if (debug > 2) echo "source "{i}" target_y = "{target_y} end // Now set the input_row number for the source to target_y setfield {input_source}[{i}] input_row {i + input_offset} for (k = kmin; k <= kmax; k=k+1) // loop over spread about target y = target_y + k*Ex_SEP_Y prob = max_prob*{exp {-1.0*decay_rate*{abs {k}}} } ymin = target_y + (k - 0.2)*Ex_SEP_Y ymax = target_y + (k + 0.2)*Ex_SEP_Y planarconnect {input_source}[{i}]/spikepulse/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_drive_synpath} \ -sourcemask box -1 -1 1 1 \ -destmask box -1 {ymin + apical1_offset} 1 {ymax + apical1_offset} \ -probability {prob} planarconnect {input_source}[{i}]/spikepulse/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_drive_synpath} \ -sourcemask box -1 -1 1 1 \ // be sure that I include the source -destmask box -1 {ymin + 0.5*Ex_SEP_Y} 1 {ymax + 0.5*Ex_SEP_Y} \ -probability 0 // {0.65*prob} end // for k end // for i end if (input_pattern == "line" || input_pattern == "box") /* The more general version has a loop over inputs: for (i=1; i <= {Ninputs}; i=i+1) with an algorithm for determining input target row and another loop over the spread about the target: for (k = kmin; k <= kmax; k=k+1) Here there are just two specialized inputs that are applied to each cell within the two boxes that are defined below. */ if (input_pattern == "box") // This version only has one input channel for all cells in the net Ninputs = 1 int Ex_NX0_in = 4 // lower left corner x int Ex_NY0_in = 4 // lower left corner y int Ex_NXlen_in = 40 // width of the box int Ex_NYlen_in = 40 // height of the box int Inh_NX0_in = 2 // lower left corner x int Inh_NY0_in = 2 // lower left corner y int Inh_NXlen_in = 20 // width of the box int Inh_NYlen_in = 20 // height of the box elif (input_pattern == "line") int Ex_NX0_in = 4 // lower left corner int Ex_NY0_in = 18 int Ex_NXlen_in = 40 // width of the box int Ex_NYlen_in = 1 // height of the box int Inh_NX0_in = 2 // lower left corner int Inh_NY0_in = 4 int Inh_NXlen_in = 20 // width of the box int Inh_NYlen_in = 1 // height of the box end // Set the input_row number for the source setfield {input_source}[1] input_row {Ex_NY0_in} setfield {input_source}[1] dest_row {Ex_NY0_in} // give a +/- 0.1*Ex_SEP_Y range in y to deal with any roundoff xmin = Ex_SEP_X*Ex_NX0_in + apical1_x_offset xmax = Ex_SEP_X*(Ex_NX0_in + Ex_NXlen_in) + apical1_x_offset ymin = Ex_SEP_Y*Ex_NY0_in - 0.1*Ex_SEP_Y ymax = Ex_SEP_Y*(Ex_NY0_in + Ex_NYlen_in -1) + 0.1*Ex_SEP_Y planarconnect {input_source}[1]/spikepulse/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_drive_synpath} \ -sourcemask box -1 -1 1 1 \ -destmask box {xmin} {ymin} {xmax} {ymax} \ -probability 1.0 echo "MGBv[1] messages: " { getmsg MGBv[1]/spikepulse/spike -out -count} /* Uncomment to allow excitation of inhibitory cells also xmin = Inh_SEP_X*Inh_NX0_in + 0.5*Ex_SEP_X ymin = Inh_SEP_Y*Inh_NY0_in + 0.5*Ex_SEP_Y - 0.1*Inh_SEP_Y xmax = Inh_SEP_X*(Inh_NX0_in + Inh_NXlen_in)+ 0.5*Ex_SEP_X ymax = Inh_SEP_Y*(Inh_NY0_in -1 + Inh_NYlen_in) + 0.5*Ex_SEP_Y + 0.1*Inh_SEP_Y planarconnect {input_source}[1]/spikepulse/spike \ /Inh_layer/{Inh_cell_name}[]/{Inh_drive_synpath} \ -sourcemask box -1 -1 1 1 \ // be sure that I include the source -destmask box {xmin} {ymin} {xmax} {ymax} \ -probability 0.65 */ /* Now make a specific input pattern for the second input */ if ((input_pattern == "line") && (Ninputs == 2)) Ex_NX0_in = 4 // lower left corner Ex_NY0_in = 30 ymin = Ex_SEP_Y*Ex_NY0_in - 0.1*Ex_SEP_Y ymax = Ex_SEP_Y*(Ex_NY0_in -1 + Ex_NYlen_in) + 0.1*Ex_SEP_Y // Set the input_row number for the source setfield {input_source}[2] input_row {Ex_NY0_in} setfield {input_source}[2] dest_row {Ex_NY0_in} planarconnect {input_source}[2]/spikepulse/spike \ /Ex_layer/{Ex_cell_name}[]/{Ex_drive_synpath} \ -sourcemask box -1 -1 1 1 \ -destmask box {xmin} {ymin} {xmax} {ymax} \ -probability 1.0 echo "MGBv[2] messages: " { getmsg MGBv[2]/spikepulse/spike -out -count} /* put similar code for Inh here, if needed */ end end // if (input_pattern == "line") // give a random delay unfiformly distributed between // delay*(1 - jitter_factor) and delay*(1 + jitter_factor) set_input_delays {input_delay} {input_jitter} if (({spike_jitter} > 0.0) && ({input_type} == "pulsed_spiketrain")) // Create a script_out to provide jitter in spike arrival time make_jitter_adder end end // function connect_inputs