struct cell_con {
double I_CaL;
double I_NCX;
double I_KACh;
double I_f;
double ISO;
double CCh;
int ALL_VAR;
double cAB_Conc;
double cAB_on_rate;
double cAB_off_rate;
double Cao; // 2; % [mM] extracellular Ca2+
double Ko; // 5.4; % [mM] extracellular K+
double Ki; // 140; % [mM] intracellular K+
double Nao; // 140; % [mM] extracellular Na+
double Nai; // 10; % [mM] intracellular Na+
double Mgi; // 2.5; % [mM] intracellular Mg+
// %% Cell compartments
double C; // 32; % [pF] cell electric capacitance
double L_cell; // 70; % [um] cell length
double R_cell; // 4; % [um] cell radius
double L_sub; // 0.02; % [um] distrance between JSR and surface membrane (submembrane space)
double V_cell; // pi*con.R_cell^2*con.L_cell*10^-3; % [pL] cell volume (3.5185838)
double V_sub; // 2*pi*con.L_sub*(con.R_cell-con.L_sub/2)*con.L_cell*10^-3; % [pL] submembrane cell volume (0.035097874) -> 10^-3 to make it pL
double V_jSR_part; // 0.0012; % [pL] part of cell volume occupied by junctional SR
double V_jSR; // con.V_jSR_part*con.V_cell; % [pL] volume of junctional SR (Ca2+ release store)
double V_i_part; // 0.46; % part of the cell volume occupied with myoplasm
double V_i; // con.V_i_part*con.V_cell-con.V_sub; % [pL] myoplasmic volume
double V_nSR_part; // 0.0116; % part of the cell volume occupied by network SR
double V_nSR; // con.V_nSR_part*con.V_cell; % [pL] volume of network SR (Ca2+ uptake store)
double V_myto; // 0.6334; % [pL] mitochondrial volume
// %% The Nernst equation
double F; // 96485; % C/M is the Faraday constant
double T; // 310.15; % K is the absolute emperature for 37*C
double R; // 8.3144; % J/(M K) is the universal gaz constant
double E_T; // 1000*(con.R*con.T/con.F); % [mV] is the 'RT/F' factor
// %% Electric potential
double E_Na; // con.E_T*log(con.Nao/con.Nai); % [mV] equilibrium potential for Na+
double E_K; // con.E_T*log(con.Ko/con.Ki); % [mV] equilibrium potential for K+
double E_Ks; // con.E_T*log((con.Ko+0.12*con.Nao)/(con.Ki+0.12*con.Nai)); % [mV] reversal potential of I_Ks
double E_CaL; // 45; % [mV] apparent reversal potential of I_CaL
double E_CaT; // 45; % [mV] apparent reversal potential of I_CaT
double E_st; // 37.4; % [mV] apparent reversal potential of I_st
// %% Sarcolemmal Ion currents and their normalized conductances (g_x)
double g_CaL; // 0.9; %0.5720; % [nS/pF] normalized conductance for I_CaL channels
double g_CaT; // 0.1832; % [nS/pF] normalized conductance for I_CaT channels
double g_If; // 0.455; %0.07; % [nS/pF] normalized conductance for I_f channels
double g_st; // 0.00001; % [nS/pF] normalized conductance for I_st channels
double g_Kr; // 0.1; % 0.08113973; % [nS/pF] normalized conductance for I_Kr channels
double g_Ks; // 0.013; % [nS/pF] normalized conductance for I_Ks channels
double g_to; // 0.252; % [nS/pF] normalized conductance for I_to channels
double g_sus; // 0.02; % [nS/pF] normalized conductance for I_sus channels
double g_bCa; // 0.0006; % [nS/pF] normalized conductance for I_bCa channels
double g_bNa; // 0.00486; % [nS/pF] normalized conductance for I_bNa channels
double g_KACh_max; // 2.2*0.14241818; % [nS/pF] normalized conductance for I_KACh channels
double I_NaKmax; // 2.88; % [pA/pF] Maximal Na/K pump current conductance
double k_NCX; // 225; % [pA/pF] Maximal Na+/Ca2+ exchanger current conductance
double V_If12; // -64; % -43.14; % [mV] Half activation voltage for I_f current in the basal state
// %% Modulation of sarcolemmal ion current by ions
double K_mfCa; // 0.00035; % [mM] dissociation constant of Ca2+ dependent I_CaL inactivation
double K_mKp; // 1.4; % [mM] half-maximal Ko for I_NaK
double K_mNap; // 14; % [mM] half-maximal Nai for I_NaK
double beta_fCa; // 60; % [mM-1.ms-1] Ca2+ association rate constant for I_CaL
double alpha_fCa; // 0.021; % [ms-1] Ca2+ dissociation rate constant for I_CaL
// %% NCX function
double K_1ni; // 395.3; % [mM] Nai binding to the first site on NCX
double K_2ni; // 2.289; % [mM] Nai binding to second site on NCX
double K_3ni; // 26.44; % [mM] Nai binding to third site on NCX
double K_1no; // 1628; % [mM] Nao binding to first site on NCX
double K_2no; // 561.4; % [mM] Nao binding to second site on NCX
double K_3no; // 4.663; % [mM] Nao binding to third site on NCX
double K_ci; // 0.0207; % [mM] Cai binding on NCX transporter
double K_co; // 3.663; % [mM] Cao binding to NCX transporter
double K_cni; // 26.44; % [mM] Nai and Cai simultaneous binding to NCX
double Q_ci; // 0.1369; % Cai occlusion reaction of NCX
double Q_co; // 0; % Cao occlusion reaction of NCX
double Q_n; // 0.4315; % Na occlusion of NCX
// %% Ca2+ diffusion
double tho_difCa; // 0.04; % [ms] Time constant of Ca diffusion from the submembrane to myoplasm
double tho_tr; // 40; % [ms] Time constant for Ca Ca transport from the network to junctional SR
// %% SR Ca2+ ATPase function
double K_up; // 0.6*10^-3; % Half-maximal Cai for Ca uptake in the network SR [mM]
double P_up; // 0.8*0.012; % Rate constant for Ca uptake by the Ca pump in the network SR [mM/ms]
double k_m_up; // 0.01;
double k_i_up_ADP; // 5.1; % [mM]
// %% RyR function
double k_oCa_max; // 10; % [1/(mM^2*ms^1)]
double k_om; // 0.06; % [1/ms]
double k_iCa; // 0.5; % [1/(mM*ms)]
double k_im; // 0.005; % [1/ms]
double EC_50SR; // 0.45; % [mM]
double k_s; // 400e3;
double MaxSR; // 13;
double MinSR; // 1;
double HSR; // 3;
// % RyR phosphorylation constants
double RyR_min; // 0.0127; % derived from PP1 activity
double RyR_max; // 0.02;
double n_RyR; // 9.773;
double k_05Ry; // 0.7;
// %% Ca2+ and Mg2+ buffering
double k_bCM; // 0.542; % [1/ms] Ca dissociation constant for calmodulin
double k_bCQ; // 0.445; % [1/ms] Ca dissociation constant for calsequestrin
double k_bTC; // 0.446; % [1/ms] Ca dissociation constant for the troponin-Ca site
double k_bTMC; // 0.00751; % [1/ms] Ca dissociation constant for the troponin-Mg site
double k_bTMM; // 0.751; % [1/ms] Mg dissociation constant for the troponin-Mg site
double k_fCM; // 227.7; % [1/mM*ms] Ca association constant for calmodulin
double k_fCQ; // 0.534; % [1/mM*ms] Ca association constant for calsequestrin
double k_fTC; // 88.8; % [mm/ms] Ca association constant for troponin
double k_fTMC; // 227.7; % [mM/ms] Ca association constant for the troponin-Mg site
double k_fTMM; // 2.277; % [mM/ms] Mg association constant for the troponin-Mg site
double TC_tot; // 0.042; % [mM] Total concentration of the troponin-Ca site
// %con.TMC_tot; // 0.062; % [mM] Total concentration of the troponin-Mg site
double CQ_tot; // 10; % [mM] Total calsequestrin concentration
double CM_tot; // 0.045; % [mM] Total calmodium concentration
// %% cAMP equations constants
// double k_bCM; // 0.5420; % [ms-1] Ca2+ dissociation constant for calmodium
// double k_fCM; // 227.7; % [mM-1 ms-1] Ca2+ associaton constant for calmodium
double k_iso; // 0.1; % [1/min] Maximal AC activity
double k_05_iso; // 3.34; % [nM] Half-maximal AC activation
double n_iso; // 0.68; % Hill coefficient
double K_ACI; // 0.016; % [min-1] Non-Ca2+ AC activity
double K_AC; // 0.0735; % [min-1] Non-Ca2+ AC activity
double K_Ca; // 0.000178; % [mM] Maximal Ca2+ AC activation
double K_AC_Ca; // 0.000024; % [mM] Half-maximal Ca2+ AC activation
double k_PDE; // 98500; % [mg protein/nmol/min] - Maximal PDE activity
double k_PKA; // 9000; % [pmol/protein/min] - Maximal PKA activity
double n_PKA; // 5; % Hill coefficient
double k_PKA_cAMP; // 284.5; % [pmol/protein] - Half-maximal PKA activation
double ATP_max; // 2.533; % [mM]
double cAMPb; // 20; % [pmol/mg]
double ADPm; // 0.276; % [mM]
// %% PKA constants
double PKI_tot; // 0.3; % [pmol/protin] - Total amount of PKA inhibitor
double PKA_tot; // 1; % [pmol/protein] - Total amount of PKA
// %% PLB phosphorylation constants
double PP1; // 0.89; % [uM] PP1 concentration
double k_PLBp; // 52.25; % [1/min] Maximal PLB phosphorylation
double n_PLB; // 1; % Hill coefficient
double k_PKA_PLB; // 1.651; % Half-maximal PLB phosphorylation
double k_PP1; // 23.575; % [1/uM/min] - Maximal PP1 activity
double k_pp1_PLB; // 0.06967; % Half maximal PP1 activity
// %% I_f cAMP activity constants
// %%
double K_if; // 24.4; % [mV] - maximal I_f activation by cAMP
double n_if; // 9.281; % Hill coefficient
double K_05if; // 17.57; % [pmol/mg protein] - Half-maximal I_f activation by cAMP
// %% Mithocondrial Ca2+ fluxes
// %%
double beta_Ca; // 0.1; % [] fraction of Ca2+ that binds to Ca2+ buffers in the mitochondria
double P_Ca; // 100*25.6e-4; % [1/ms] uniporter Ca2+ permeability
double phi_m; // 154.226; % [mV] mitochontrial membrane potential
double alpha_m; // 0.2; % [] mitochondrial activity coefficients
double alpha_e; // 0.341; % [] extracmitochondrial activity coefficients
double Q_mo; // 2.4*25.6e-4; % [mM/ms] Na+-Ca2+ exchanger maximal velocity
double K_Cam; // 0.003; % [mM] Na+ - Ca2+ exchanger Ca2+ affinity
// %% I_Ks phosphorilation
// %%
double V_smin; // 257.1429; % [mV] Minimal Iks activation shift by PKA
double V_smax; // 400; % [mV] Maximal Iks activation shift by PKA
double g_kmax; // 25; % [] Maximal Iks activation by PKA
double g_K05; // 0.5; % [] Half-maximal Iks activation by PKA
double k_05k; // 0.4; % [] Half-maximal Iks activation shift by PKA
double g_kmin; // 14.7541; % [] Minimal Iks activation by PKA
// %% ATP-ADP
// %%
double kATP; // 61.42*100; % []
double k_ATP05; // 6724; % []
// double cAMPb; // 20; % [pmol/mg protein] - Baseline cAMP
double n_ATP; // 3.36; % []
double K_ATPmin; // 6034; % []
double CATPi; // 2.6; % [mM] Total nucleotide concentrations
double k_i_up; // 0.14; % [mM]
double k_NaK_ATP; // 8*1e-3; % [mM]
double k_NaK_ADP; // 0.1; % [mM]
// double CATPi; // 2.6; % [mM]
// %con.CATPm; // 1.5; % [mM]
// %% Force
// %%
double SL_lo; // 0.8e-6; % [m] A constant coefficient that describes the effect of the actin- and myosin-filament lengths on the single overlap length.
double Nc; // 2e13; % [1/mm^2] The SAN cross-section area
double FK0; // 350; % [1/mM] The cross-bridge independent coefficient of calcium affinity
double FK1; // 3e3; % [1/mM] The cooperativity coefficient. Describes the dependence of calcium affinity on the number of strong cross-bridges.
double FN; // 3.5; % Hill coefficient
double FK05; // 2.5e9; % [1/mm^3] Half-maximal cross-bridge Ca2+ affinity
double Fkl; // 60; % [1/mM/ms] The rate constant of calcium binding to troponin low-affinity sites
double Ff; // 40e-3; % [1/ms] The cross-bridge turnover rate from the weak to the strong conformation
double Fg0; // 30e-3; % [1/ms] The cross-bridge weakening rate at isometric regime
double Fg1; // 4.4e6; % [1/m] The mechanical-feedback coefficient. Describes the dependence of the XB weakening rate on the shortening velocity
double Fxb; // 2e-9; % [mN] The unitary force per cross-bridge at isometric regime
// %% ATP utilizers
// %%
double Max_ATP; // 12e-4; % [mM]
double K_M_ATP; // 0.03; % [mM]
double K_M_ADP; // 0.26; % [mM]
// %% L-type phosphorilation constants
// % ==> all constants currently in the function itself
};
void load_constants( cell_con * con );
//function con = load_constants()
void load_constants( cell_con * con ) {
// %% Fixed ion concentration
con->Cao = 2; // % [mM] extracellular Ca2+
con->Ko = 5.4; // % [mM] extracellular K+
con->Ki = 140; // % [mM] intracellular K+
con->Nao = 140; // % [mM] extracellular Na+
con->Nai = 10; // % [mM] intracellular Na+
con->Mgi = 2.5; // % [mM] intracellular Mg+
// %% Cell compartments
con->C = 32; // % [pF] cell electric capacitance
con->L_cell = 70; // % [um] cell length
con->R_cell = 4; // % [um] cell radius
con->L_sub = 0.02; // % [um] distrance between JSR and surface membrane (submembrane space)
con->V_cell = pi * pow( con->R_cell, 2) * con->L_cell * 0.001; //10^-3; // % [pL] cell volume (3.5185838)
con->V_sub = 2. * pi * con->L_sub * ( con->R_cell - con->L_sub / 2 ) * con->L_cell *0.001; //10^-3; // % [pL] submembrane cell volume (0.035097874) -> 10^-3 to make it pL
con->V_jSR_part = 0.0012; // % [pL] part of cell volume occupied by junctional SR
con->V_jSR = con->V_jSR_part * con->V_cell; // % [pL] volume of junctional SR (Ca2+ release store)
con->V_i_part = 0.46; // % part of the cell volume occupied with myoplasm
con->V_i = con->V_i_part * con->V_cell - con->V_sub; // % [pL] myoplasmic volume
con->V_nSR_part = 0.0116; // % part of the cell volume occupied by network SR
con->V_nSR = con->V_nSR_part*con->V_cell; // % [pL] volume of network SR (Ca2+ uptake store)
con->V_myto = 0.6334; // % [pL] mitochondrial volume
// %% The Nernst equation
con->F = 96485; // % C/M is the Faraday constant
con->T = 310.15; // % K is the absolute emperature for 37*C
con->R = 8.3144; // % J/(M K) is the universal gaz constant
con->E_T = 1000*(con->R*con->T/con->F); // % [mV] is the 'RT/F' factor
// %% Electric potential
con->E_Na = con->E_T*log(con->Nao/con->Nai); // % [mV] equilibrium potential for Na+
con->E_K = con->E_T*log(con->Ko/con->Ki); // % [mV] equilibrium potential for K+
con->E_Ks = con->E_T*log((con->Ko+0.12*con->Nao)/(con->Ki+0.12*con->Nai)); // % [mV] reversal potential of I_Ks
con->E_CaL = 45; // % [mV] apparent reversal potential of I_CaL
con->E_CaT = 45; // % [mV] apparent reversal potential of I_CaT
con->E_st = 37.4; // % [mV] apparent reversal potential of I_st
// %% Sarcolemmal Ion currents and their normalized conductances (g_x)
con->g_CaL = 0.9; // %0.5720;% [nS/pF] normalized conductance for I_CaL channels
con->g_CaT = 0.1832; // % [nS/pF] normalized conductance for I_CaT channels
con->g_If = 0.455;// * 0.2;//0.455; // %0.07; // % [nS/pF] normalized conductance for I_f channels
con->g_st = 0.00001; // % [nS/pF] normalized conductance for I_st channels
con->g_Kr = 0.1; // % 0.08113973; // % [nS/pF] normalized conductance for I_Kr channels
con->g_Ks = 0.013; // % [nS/pF] normalized conductance for I_Ks channels
con->g_to = 0.252; // % [nS/pF] normalized conductance for I_to channels
con->g_sus = 0.02; // % [nS/pF] normalized conductance for I_sus channels
con->g_bCa = 0.0006; // % [nS/pF] normalized conductance for I_bCa channels
con->g_bNa = 0.00486; // % [nS/pF] normalized conductance for I_bNa channels
con->g_KACh_max = 2.2*0.14241818; // % [nS/pF] normalized conductance for I_KACh channels
con->I_NaKmax = 2.88; // % [pA/pF] Maximal Na/K pump current conductance
con->k_NCX = 225; // % [pA/pF] Maximal Na+/Ca2+ exchanger current conductance
con->V_If12 = -64; // % -43.14; // % [mV] Half activation voltage for I_f current in the basal state
// %% Modulation of sarcolemmal ion current by ions
con->K_mfCa = 0.00035; // % [mM] dissociation constant of Ca2+ dependent I_CaL inactivation
con->K_mKp = 1.4; // % [mM] half-maximal Ko for I_NaK
con->K_mNap = 14; // % [mM] half-maximal Nai for I_NaK
con->beta_fCa = 60; // % [mM-1.ms-1] Ca2+ association rate constant for I_CaL
con->alpha_fCa = 0.021; // % [ms-1] Ca2+ dissociation rate constant for I_CaL
// %% NCX function
con->K_1ni = 395.3; // % [mM] Nai binding to the first site on NCX
con->K_2ni = 2.289; // % [mM] Nai binding to second site on NCX
con->K_3ni = 26.44; // % [mM] Nai binding to third site on NCX
con->K_1no = 1628; // % [mM] Nao binding to first site on NCX
con->K_2no = 561.4; // % [mM] Nao binding to second site on NCX
con->K_3no = 4.663; // % [mM] Nao binding to third site on NCX
con->K_ci = 0.0207; // % [mM] Cai binding on NCX transporter
con->K_co = 3.663; // % [mM] Cao binding to NCX transporter
con->K_cni = 26.44; // % [mM] Nai and Cai simultaneous binding to NCX
con->Q_ci = 0.1369; // % Cai occlusion reaction of NCX
con->Q_co = 0; // % Cao occlusion reaction of NCX
con->Q_n = 0.4315; // % Na occlusion of NCX
// %% Ca2+ diffusion
con->tho_difCa = 0.04; // % [ms] Time constant of Ca diffusion from the submembrane to myoplasm
con->tho_tr = 40; // % [ms] Time constant for Ca Ca transport from the network to junctional SR
// %% SR Ca2+ ATPase function
con->K_up = 0.6* 0.001; //10^-3; // % Half-maximal Cai for Ca uptake in the network SR [mM]
con->P_up = 0.8*0.012; // % Rate constant for Ca uptake by the Ca pump in the network SR [mM/ms]
con->k_m_up = 0.01;
con->k_i_up_ADP = 5.1; // % [mM]
// %% RyR function
con->k_oCa_max = 10; // % [1/(mM^2*ms^1)]
con->k_om = 0.06; // % [1/ms]
con->k_iCa = 0.5; // % [1/(mM*ms)]
con->k_im = 0.005; // % [1/ms]
con->EC_50SR = 0.45; // % [mM]
con->k_s = 400e3;
con->MaxSR = 13;
con->MinSR = 1;
con->HSR = 3;
// % RyR phosphorylation constants
con->RyR_min = 0.0127; // % derived from PP1 activity
con->RyR_max = 0.02;
con->n_RyR = 9.773;
con->k_05Ry = 0.7;
// %% Ca2+ and Mg2+ buffering
con->k_bCM = 0.542; // % [1/ms] Ca dissociation constant for calmodulin
con->k_bCQ = 0.445; // % [1/ms] Ca dissociation constant for calsequestrin
con->k_bTC = 0.446; // % [1/ms] Ca dissociation constant for the troponin-Ca site
con->k_bTMC = 0.00751; // % [1/ms] Ca dissociation constant for the troponin-Mg site
con->k_bTMM = 0.751; // % [1/ms] Mg dissociation constant for the troponin-Mg site
con->k_fCM = 227.7; // % [1/mM*ms] Ca association constant for calmodulin
con->k_fCQ = 0.534; // % [1/mM*ms] Ca association constant for calsequestrin
con->k_fTC = 88.8; // % [mm/ms] Ca association constant for troponin
con->k_fTMC = 227.7; // % [mM/ms] Ca association constant for the troponin-Mg site
con->k_fTMM = 2.277; // % [mM/ms] Mg association constant for the troponin-Mg site
con->TC_tot = 0.042; // % [mM] Total concentration of the troponin-Ca site
// %con->TMC_tot = 0.062; // % [mM] Total concentration of the troponin-Mg site
con->CQ_tot = 10; // % [mM] Total calsequestrin concentration
con->CM_tot = 0.045; // % [mM] Total calmodium concentration
// %% cAMP equations constants
con->k_bCM = 0.5420; // % [ms-1] Ca2+ dissociation constant for calmodium
con->k_fCM = 227.7; // % [mM-1 ms-1] Ca2+ associaton constant for calmodium
con->k_iso = 0.1; // % [1/min] Maximal AC activity
con->k_05_iso = 3.34; // % [nM] Half-maximal AC activation
con->n_iso = 0.68; // % Hill coefficient
con->K_ACI = 0.016; // % [min-1] Non-Ca2+ AC activity
con->K_AC = 0.0735; // % [min-1] Non-Ca2+ AC activity
con->K_Ca = 0.000178; // % [mM] Maximal Ca2+ AC activation
con->K_AC_Ca = 0.000024; // % [mM] Half-maximal Ca2+ AC activation
con->k_PDE = 98500; // % [mg protein/nmol/min] - Maximal PDE activity
con->k_PKA = 9000; // % [pmol/protein/min] - Maximal PKA activity
con->n_PKA = 5; // % Hill coefficient
con->k_PKA_cAMP = 284.5; // % [pmol/protein] - Half-maximal PKA activation
con->ATP_max = 2.533; // % [mM]
con->cAMPb = 20; // % [pmol/mg]
con->ADPm = 0.276; // % [mM]
// %% PKA constants
con->PKI_tot = 0.3; // % [pmol/protin] - Total amount of PKA inhibitor
con->PKA_tot = 1; // % [pmol/protein] - Total amount of PKA
// %% PLB phosphorylation constants
con->PP1 = 0.89; // % [uM] PP1 concentration
con->k_PLBp = 52.25; // % [1/min] Maximal PLB phosphorylation
con->n_PLB = 1; // % Hill coefficient
con->k_PKA_PLB = 1.651; // % Half-maximal PLB phosphorylation
con->k_PP1 = 23.575; // % [1/uM/min] - Maximal PP1 activity
con->k_pp1_PLB = 0.06967; // % Half maximal PP1 activity
// %% I_f cAMP activity constants
// %%
con->K_if = 24.4; // % [mV] - maximal I_f activation by cAMP
con->n_if = 9.281; // % Hill coefficient
con->K_05if = 17.57; // % [pmol/mg protein] - Half-maximal I_f activation by cAMP
// %% Mithocondrial Ca2+ fluxes
// %%
con->beta_Ca = 0.1; // % [] fraction of Ca2+ that binds to Ca2+ buffers in the mitochondria
con->P_Ca = 100*25.6e-4; // % [1/ms] uniporter Ca2+ permeability
con->phi_m = 154.226; // % [mV] mitochontrial membrane potential
con->alpha_m = 0.2; // % [] mitochondrial activity coefficients
con->alpha_e = 0.341; // % [] extracmitochondrial activity coefficients
con->Q_mo = 2.4*25.6e-4; // % [mM/ms] Na+-Ca2+ exchanger maximal velocity
con->K_Cam = 0.003; // % [mM] Na+ - Ca2+ exchanger Ca2+ affinity
// %% I_Ks phosphorilation
// %%
con->V_smin = 257.1429; // % [mV] Minimal Iks activation shift by PKA
con->V_smax = 400; // % [mV] Maximal Iks activation shift by PKA
con->g_kmax = 25; // % [] Maximal Iks activation by PKA
con->g_K05 = 0.5; // % [] Half-maximal Iks activation by PKA
con->k_05k = 0.4; // % [] Half-maximal Iks activation shift by PKA
con->g_kmin = 14.7541; // % [] Minimal Iks activation by PKA
// %% ATP-ADP
// %%
con->kATP = 61.42*100; // % []
con->k_ATP05 = 6724; // % []
con->cAMPb = 20; // % [pmol/mg protein] - Baseline cAMP
con->n_ATP = 3.36; // % []
con->K_ATPmin = 6034; // % []
con->CATPi= 2.6; // % [mM] Total nucleotide concentrations
con->k_i_up = 0.14; // % [mM]
con->k_NaK_ATP = 8*1e-3; // % [mM]
con->k_NaK_ADP = 0.1; // % [mM]
con->CATPi = 2.6; // % [mM]
// %con->CATPm = 1.5; // % [mM]
// %% Force
// %%
con->SL_lo = 0.8e-6; // % [m] A constant coefficient that describes the effect of the actin- and myosin-filament lengths on the single overlap length.
con->Nc = 2e13; // % [1/mm^2] The SAN cross-section area
con->FK0 = 350; // % [1/mM] The cross-bridge independent coefficient of calcium affinity
con->FK1 = 3e3; // % [1/mM] The cooperativity coefficient. Describes the dependence of calcium affinity on the number of strong cross-bridges.
con->FN = 3.5; // % Hill coefficient
con->FK05 = 2.5e9; // % [1/mm^3] Half-maximal cross-bridge Ca2+ affinity
con->Fkl = 60; // % [1/mM/ms] The rate constant of calcium binding to troponin low-affinity sites
con->Ff = 40e-3; // % [1/ms] The cross-bridge turnover rate from the weak to the strong conformation
con->Fg0 = 30e-3; // % [1/ms] The cross-bridge weakening rate at isometric regime
con->Fg1 = 4.4e6; // % [1/m] The mechanical-feedback coefficient. Describes the dependence of the XB weakening rate on the shortening velocity
con->Fxb = 2e-9; // % [mN] The unitary force per cross-bridge at isometric regime
// %% ATP utilizers
// %%
con->Max_ATP = 12e-4; // % [mM]
con->K_M_ATP = 0.03; // % [mM]
con->K_M_ADP = 0.26; // % [mM]
// %% L-type phosphorilation constants
// % ==> all constants currently in the function itself
// end
}