TITLE Voltage-gated low threshold potassium current from Kv1 subunits
COMMENT
NEURON implementation of a potassium channel from Kv1.1 subunits
Kinetical scheme: Hodgkin-Huxley m^4, no inactivation
Experimental data taken from:
Human Kv1.1 expressed in xenopus oocytes: Zerr et al., J Neurosci 18, 2842, 2848, 1998
Vhalf = -28.8 +- 2.3 mV; k = 8.1+- 0.9 mV
The voltage dependency of the rate constants was approximated by:
alpha = ca * exp(-(v+cva)/cka)
beta = cb * exp(-(v+cvb)/ckb)
Parameters ca, cva, cka, cb, cvb, ckb
were determined from least square-fits to experimental data of G/Gmax(v) and tau(v).
Values are defined in the CONSTANT block.
Model includes calculation of Kv gating current
Reference: Akemann et al., Biophys. J. (2009) 96: 3959-3976
Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute, Wako City, Japan
http://www.neurodynamics.brain.riken.jp
Date of Implementation: April 2007
Contact: akemann@brain.riken.jp
ENDCOMMENT
NEURON {
SUFFIX Kv1
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT i
RANGE g, gbar, ik, i , igate, nc
GLOBAL ninf, taun
GLOBAL gateCurrent, gunit
}
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(nA) = (nanoamp)
(pA) = (picoamp)
(S) = (siemens)
(nS) = (nanosiemens)
(pS) = (picosiemens)
(um) = (micron)
(molar) = (1/liter)
(mM) = (millimolar)
}
CONSTANT {
e0 = 1.60217646e-19 (coulombs)
q10 = 2.7
ca = 0.12889 (1/ms)
cva = 45 (mV)
cka = -33.90877 (mV)
cb = 0.12889 (1/ms)
cvb = 45 (mV)
ckb = 12.42101 (mV)
zn = 2.7978 (1) : valence of n-gate
}
PARAMETER {
gateCurrent = 0 (1) : gating currents ON = 1 OFF = 0
gbar = 0.004 (S/cm2) <0,1e9>
gunit = 16 (pS) : unitary conductance
}
ASSIGNED {
celsius (degC)
v (mV)
ik (mA/cm2)
i (mA/cm2)
igate (mA/cm2)
ek (mV)
g (S/cm2)
nc (1/cm2) : membrane density of channel
ninf (1)
taun (ms)
alphan (1/ms)
betan (1/ms)
qt (1)
}
STATE { n }
INITIAL {
nc = (1e12) * gbar / gunit
qt = q10^((celsius-22 (degC))/10 (degC))
rates(v)
n = ninf
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * n^4
ik = g * (v - ek)
igate = nc * (1e6) * e0 * 4 * zn * ngateFlip()
if (gateCurrent != 0) {
i = igate
}
}
DERIVATIVE states {
rates(v)
n' = (ninf-n)/taun
}
PROCEDURE rates(v (mV)) {
alphan = alphanfkt(v)
betan = betanfkt(v)
ninf = alphan/(alphan+betan)
taun = 1/(qt*(alphan + betan))
}
FUNCTION alphanfkt(v (mV)) (1/ms) {
alphanfkt = ca * exp(-(v+cva)/cka)
}
FUNCTION betanfkt(v (mV)) (1/ms) {
betanfkt = cb * exp(-(v+cvb)/ckb)
}
FUNCTION ngateFlip() (1/ms) {
ngateFlip = (ninf-n)/taun
}