// GENERATES AN IO CURVE OF RESPONSES TO BRIEF HIGH FREQUENCY STIMULATION
// OF INCREASING NUMBER OF EXCITATORY INPUTS IN SLM
// TESTS FOR EFFECT OF GABAA ON INDUCTION OF NMDAR-MEDIATED DENDRITIC SPIKES
//
// This script:
// - runs a family of two simulations:
// stimulation in stratum rediatum and stratum lacunosum moleculare,
// same stimulation in the presence of AP5.
// For each simulation, voltages are displayed for the soma, a proximal tuft
// dendrite, and a distal tuft dendrite. Additionally, shape plots are used
// to illustrate the location of excitatory and inhibitory synapses.
// Numerical parameters for simulation.
tstop = 120 // stop time of simulation
stimStart=20
dtime=0.2
stim_no=3
stim_inter=5
stim_delay=0
stim_noise=0
simul_iter=10
scale_factor1=0.2
scale_factor0=0.4
//seed of random number generator
randShift_inh = 2.357
randShift_exc = 0.357
//parameters for rectifying and non rectifying part of GABAsynapses
GABAweight_total=0.001
GABAweight0=(GABAweight_total/5)
GABAweight1=(4*GABAweight_total/5)
GABAtau2=30
GABAtau1=1.0
GABArelP=1
slope_factor=3
V50=-52
//establish rectifying and non-rectifying parts of GABA synapses
for ii=1,totVgatAt {
synGABA[ii-1].tau1= GABAtau1/2
synGABA[ii-1].tau2 = GABAtau2/2
synGABA[ii-1].slope_factor=0.3
synGABA[ii-1].V50=-150
synGABArect[ii-1].tau1= GABAtau1
synGABArect[ii-1].tau2 = GABAtau2
synGABArect[ii-1].slope_factor=slope_factor
synGABArect[ii-1].V50=V50
}
load_file("Generate_Stimulator.hoc")
load_file("Connect_Stimulator2ExcSyn.hoc")
load_file("Connect_Stimulator2InhSyn.hoc")
//setup recording vectors etc.
objref recv_tuft1, recv_tuft2, recv_tuft3, recv_soma, rect
objref recv_tuft4, recv_tuft5, recv_trunk, recv_trunk2
strdef ColLabel, file_name1, file_name2, file_name3, file_name4
objref outfile, storeM_control, storeM_fast, storeM_noRect, storeM_fast_NR
load_file("Print-to-File.hoc")
ColLabel = "Membrane potential"
file_name1="C:/../Control.atf"
file_name3="C:/../fast_scaled.atf"
file_name2="C:/Daten/Modeling/Bloss_Spruston_Neuron_2016/CA1_pyr_JMS_v5/output/Syn_IO_GABAkinetics/nextround2/no_rect.atf"
recv_soma = new Vector()
recv_tuft1 = new Vector()
recv_tuft2 = new Vector()
recv_tuft3 = new Vector()
recv_tuft4 = new Vector()
recv_tuft5 = new Vector()
recv_trunk = new Vector()
recv_trunk2 = new Vector()
rect = new Vector()
recv_soma.record(&soma.sec.v(0.5),dtime)
rect.record(&t)
rec_conditions=8
storeM_fast = new Matrix(tstop/dtime+1,rec_conditions*simul_iter)
storeM_fast_NR = new Matrix(tstop/dtime+1,rec_conditions*simul_iter)
storeM_control = new Matrix(tstop/dtime+1,rec_conditions*simul_iter)
storeM_noRect = new Matrix(tstop/dtime+1,rec_conditions*simul_iter)
nExcAct_SLM = 150// number of excitatory synapses to activate, ~10% of 1464 total with spine density of 0.5/um2
nInhAct_SLM = 10 // number of inhibitory synapses to activate; ~3.5% of 280 total
nExcAct_SR = 0//200//number of excitatory synapses to activate, ~3% of 6000 total (oblique plus trunk; instead of 4920)
nInhAct_SR = 0//30 //number of inhibitory synapses to activate; 21% of 145 total
// i.e. same proportion of inhibitory and excitatory synapses are activated at step 7
load_file("update_Synapses.hoc")
// Parameters for visualisation. dendInd1 and dendInd2 refer to dendritic
// indices that will have voltage traces plotted.
dendInd1 = 112 // left apical, SLM, with inhibition
dendInd2 = 149 // left apical, terminal neurite, SLM, no inhibition
dendInd3 = 179 // SLM, no inhibition
dendInd4 = 180 // SLM, no inhibition
dendInd5 = 176 // SLM, 2 GABA synapses
dendInd6 = 161 // apical trunk, just at SR/SLM border
dendInd7 = 85 //apical trunk, just at SR/SLM border
objref dend1Ref,dend2Ref,dend3Ref,dend4Ref,dend5Ref,dend6Ref,dend7Ref
Cell[0].dend[dendInd1] {dend1Ref = new SectionRef()}
Cell[0].dend[dendInd2] {dend2Ref = new SectionRef()}
Cell[0].dend[dendInd3] {dend3Ref = new SectionRef()}
Cell[0].dend[dendInd4] {dend4Ref = new SectionRef()}
Cell[0].dend[dendInd5] {dend5Ref = new SectionRef()}
Cell[0].dend[dendInd6] {dend6Ref = new SectionRef()}
Cell[0].dend[dendInd7] {dend7Ref = new SectionRef()}
recv_tuft1.record(&dend1Ref.sec.v(0.5),dtime)
recv_tuft2.record(&dend2Ref.sec.v(0.5),dtime)
recv_tuft3.record(&dend3Ref.sec.v(0.5),dtime)
recv_tuft4.record(&dend4Ref.sec.v(0.5),dtime)
recv_tuft5.record(&dend5Ref.sec.v(0.5),dtime)
recv_trunk.record(&dend7Ref.sec.v(0.5),dtime)
recv_trunk2.record(&dend6Ref.sec.v(0.5),dtime)
// Determine number of segments to track.
totSegs = 0
forall { for (x,0) { totSegs +=1 } }
// Create graphs for visualisation.
objref voltBL_d1,voltBL_d2, voltAMPA
objref shapeExc[simul_iter/2],shapeInh
voltBL_d1 = new Graph()
voltBL_d1.addvar("soma.sec.v(0.5)",2,1)
voltBL_d1.addvar("dend7Ref.sec.v(0.5)",3,1)
voltBL_d1.addvar("dend2Ref.sec.v(0.5)",4,1)
voltBL_d1.label("Non-linear")
voltBL_d1.exec_menu("Keep Lines")
voltBL_d1.size(stimStart-20,tstop,-75,-5)
voltBL_d2 = new Graph()
voltBL_d2.addvar("soma.sec.v(0.5)",2,1)
voltBL_d2.addvar("dend7Ref.sec.v(0.5)",3,1)
voltBL_d2.addvar("dend1Ref.sec.v(0.5)",4,1)
voltBL_d2.label("Non-linear")
voltBL_d2.exec_menu("Keep Lines")
voltBL_d2.size(stimStart-20,tstop,-75,-5)
strdef shape_label
for (ii=1;ii<simul_iter/2+1; ii=ii+1){ //
sprint(shape_label,"Exc, %d",2*ii)
print shape_label
shapeExc[ii-1] = new Shape()
shapeExc[ii-1].label(shape_label)
}
shapeInh = new Shape()
shapeInh.label("Inh")
// Create vectors that will store indices of active excitatory and
// inhibitory synapses.
objref curExc_SLM, curExc_SR, curInh_SLM, curInh_SR
// Vectors of normalised release probability
objref norm_Pr_exc, norm_Pr_inh_SLM, ActSyn, ActSyn_inh
// Initialise simulations by adding channels and assigning genotypes to
// inhibitory synapses.
initChannels()
seedGenotypes()
norm_Pr_exc = new Vector(5) //, [1, 1.55, 1.83, 1.93, 2.03])
ActSyn = new Vector(5)
norm_Pr_exc.x[0] = 1
norm_Pr_exc.x[1] = 1.5
norm_Pr_exc.x[2] = 1.8
norm_Pr_exc.x[3] = 1.9
norm_Pr_exc.x[4] = 2.0
// DO SIMULATION AND PLOT RESULTS.
// turn off cvode variable time step in order to avoid errors during repetitive simulations
cvode_active(0)
// run simulation with inhibition
curGr = graphList[0].append(voltBL_d1)
curGr = graphList[0].append(voltBL_d2)
norm_Pr_inh_SLM = new Vector(5) //
ActSyn_inh = new Vector(5)
norm_Pr_inh_SLM.x[0] = 1
norm_Pr_inh_SLM.x[1] = 1
norm_Pr_inh_SLM.x[2] = 1
norm_Pr_inh_SLM.x[3] = 1
norm_Pr_inh_SLM.x[4] = 1
activateInhibition(cellList,-1,1) // clear inhibition
curInh_SLM = activateInhibition(tuftList,nInhAct_SLM,randShift_inh,"vgat",1)
ActSyn_inh = set_InhSyn_syn_fixed(curInh_SLM, randShift_inh/4, nInhAct_SLM, shapeInh)
print "In SLM, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]
for(jj=1; jj<simul_iter+1; jj=jj+1){
print jj
// Clear excitation and then turn on select synapses.
activateExcitation(cellList,-1,1) // clear excitation
curExc_SLM = activateExcitation(tuftList,jj*nExcAct_SLM,randShift_exc) // activate excitatory synapses
shape_no=(jj/2)-1
if (jj%2==1){shape_no=(jj-1)/2}
ActSyn = set_gluSyn_fixed_N(curExc_SLM, randShift_exc/2, 0.1, norm_Pr_exc, shapeExc[shape_no])
print "In SLM, the number of activated synapses at each pulse are: ",ActSyn.x[0], ", " , ActSyn.x[1], ", " , ActSyn.x[2], ", " , ActSyn.x[3], ", " , ActSyn.x[4]
init()
run()
storeM_control.setcol(jj-1,recv_soma)
storeM_control.setcol(jj-1+simul_iter,recv_tuft1)
storeM_control.setcol(jj-1+2*simul_iter,recv_tuft2)
storeM_control.setcol(jj-1+3*simul_iter,recv_tuft3)
storeM_control.setcol(jj-1+4*simul_iter,recv_tuft4)
storeM_control.setcol(jj-1+5*simul_iter,recv_tuft5)
storeM_control.setcol(jj-1+6*simul_iter,recv_trunk)
storeM_control.setcol(jj-1+7*simul_iter,recv_trunk2)
reset_gluSyn()
}
graphList[0].remove_all()
// SAVE OUTPUT
//print2file(storeM_control,file_name1,ColLabel)
// run simulation without rectification inhibition
load_file("tuft_NMDA_spike_noRect.hoc")
// run simulation with PV-like dynamics
load_file("tuft_NMDA_spike_fast.hoc")