// Create graphs for visualisation.
objref voltAP5[7],voltCont[7]
strdef volt_label
for sti = 0,6{
print sti
//run simulation with increasing levels of tonic inhibition
storeM = new Matrix(tstop/dtime+1,rec_conditions*simul_iter)
voltCont[sti] = new Graph()
voltCont[sti].addvar("soma.sec.v(0.5)",2,1)
voltCont[sti].addvar("dend2Ref.sec.v(0.5)",4,1)
sprint(volt_label,"TI, %d",TI_strength.x[sti])
voltCont[sti].label(volt_label)
voltCont[sti].exec_menu("Keep Lines")
voltCont[sti].size(stimStart-20,tstop,-75,-15)
voltAP5[sti] = new Graph()
voltAP5[sti].addvar("soma.sec.v(0.5)",2,1)
voltAP5[sti].addvar("dend2Ref.sec.v(0.5)",4,1)
sprint(volt_label,"No NMDA, TI, %d",TI_strength.x[sti])
voltAP5[sti].label(volt_label)
voltAP5[sti].exec_menu("Keep Lines")
voltAP5[sti].size(stimStart-20,tstop,-75,-15)
// Adjust TI strength
forsec basalList {gtonic_tonic= TI_strength.x[sti] * gtonic}
forsec apicalList {
for (x) {
xdist = distance(x)
if (xdist > dlimit) {
xdist = dlimit
}
gtonic_tonic(x) = TI_strength.x[sti] * gtonic*(1+3*xdist/100)
}
}
for(jj=1; jj<simul_iter+1; jj=jj+1){
print jj
// Clear excitation and then turn on select synapses.
activateExcitation(cellList,-1,1) // clear excitation
curExc_SR = activateExcitation(radiatumList,jj*nExcAct_SR,randShift) // activate excitatory synapses
curExc_SLM = activateExcitation(tuftList,jj*nExcAct_SLM,randShift) // activate excitatory synapses
shape_no=jj-1 //(jj/2)-1
ActSyn = set_gluSyn(curExc_SR, randShift, 0.1, norm_Pr_exc, shapeExc[shape_no])
print "In SR, the number of activated synapses at each pulse are: ",ActSyn.x[0], ", " , ActSyn.x[1], ", " , ActSyn.x[2], ", " , ActSyn.x[3], ", " , ActSyn.x[4]
ActSyn = set_gluSyn(curExc_SLM, randShift/2, 0.1, norm_Pr_exc, shapeExc[shape_no])
print "In SLM, the number of activated synapses at each pulse are: ",ActSyn.x[0], ", " , ActSyn.x[1], ", " , ActSyn.x[2], ", " , ActSyn.x[3], ", " , ActSyn.x[4]
curGr = graphList[0].append(voltCont[sti]) //}
init() //finitialize()
run()
graphList[0].remove(curGr-1)
storeM.setcol(jj-1,recv_soma)
storeM.setcol(jj-1+simul_iter,recv_tuft1)
storeM.setcol(jj-1+2*simul_iter,recv_tuft2)
storeM.setcol(jj-1+3*simul_iter,recv_tuft3)
storeM.setcol(jj-1+4*simul_iter,recv_obl1)
storeM.setcol(jj-1+5*simul_iter,recv_obl2)
storeM.setcol(jj-1+6*simul_iter,recv_obl3)
// Wash-in AP5, block NMDA conductance
reset_NMDASyn()
curGr = graphList[0].append(voltAP5[sti]) //}
init() //finitialize()
run()
graphList[0].remove(curGr-1)
storeM.setcol(jj-1+7*simul_iter,recv_soma)
storeM.setcol(jj-1+8*simul_iter,recv_tuft1)
storeM.setcol(jj-1+9*simul_iter,recv_tuft2)
storeM.setcol(jj-1+10*simul_iter,recv_tuft3)
storeM.setcol(jj-1+11*simul_iter,recv_obl1)
storeM.setcol(jj-1+12*simul_iter,recv_obl2)
storeM.setcol(jj-1+13*simul_iter,recv_obl3)
reset_AMPASyn()
}
// save output
/*
if (sti==0){print2file(storeM,file_name1,ColLabel)}
if (sti==1){print2file(storeM,file_name2,ColLabel)}
if (sti==2){print2file(storeM,file_name3,ColLabel)}
if (sti==3){print2file(storeM,file_name4,ColLabel)}
if (sti==4){print2file(storeM,file_name5,ColLabel)}
if (sti==5){print2file(storeM,file_name6,ColLabel)}
if (sti==6){print2file(storeM,file_name7,ColLabel)}
*/
}