//run simulation with reduced rectifying inhibition, mimicking RO effect
// Create graphs for visualisation.
objref volt_redInh_AP5,volt_redInh
volt_redInh = new Graph()
volt_redInh.addvar("soma.sec.v(0.5)",2,1)
volt_redInh.addvar("dend2Ref.sec.v(0.5)",4,1)
volt_redInh.label("alpha5-NAM")
volt_redInh.exec_menu("Keep Lines")
volt_redInh.size(stimStart-20,tstop,-75,-15)
volt_redInh_AP5 = new Graph()
volt_redInh_AP5.addvar("soma.sec.v(0.5)",2,1)
volt_redInh_AP5.addvar("dend2Ref.sec.v(0.5)",4,1)
volt_redInh_AP5.label("alpha5-NAM, no NMDA")
volt_redInh_AP5.exec_menu("Keep Lines")
volt_redInh_AP5.size(stimStart-20,tstop,-75,-15)
//reduce rectifying inhibition by 50%
GABAweight1=0.5*(4/5)*GABAweight_total
reset_InhSyn()
ActSyn_inh = set_InhSyn_fixed_N(curInh_SR, randShift/3, GABArelP, norm_Pr_inh_SR, shapeInh)
//print "In SR, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]
ActSyn_inh = set_InhSyn_fixed_N(curInh_SLM, randShift/4, GABArelP, norm_Pr_inh_SLM, shapeInh)
//print "In SLM, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]
for(jj=1; jj<simul_iter+1; jj=jj+1){
print jj
// Clear excitation and then turn on select synapses.
activateExcitation(cellList,-1,1) // clear excitation
curExc_SR = activateExcitation(radiatumList,jj*nExcAct_SR,randShift) // activate excitatory synapses
curExc_SLM = activateExcitation(tuftList,jj*nExcAct_SLM,randShift) // activate excitatory synapses
shape_no=(jj/2)-1
if (jj%2==1){shape_no=(jj-1)/2}
ActSyn = set_gluSyn(curExc_SR, randShift, 0.1, norm_Pr_exc, shapeExc[shape_no])
print "In SR, the number of activated synapses at each pulse are: ",ActSyn.x[0], ", " , ActSyn.x[1], ", " , ActSyn.x[2], ", " , ActSyn.x[3], ", " , ActSyn.x[4]
ActSyn = set_gluSyn(curExc_SLM, randShift/2, 0.1, norm_Pr_exc, shapeExc[shape_no])
print "In SLM, the number of activated synapses at each pulse are: ",ActSyn.x[0], ", " , ActSyn.x[1], ", " , ActSyn.x[2], ", " , ActSyn.x[3], ", " , ActSyn.x[4]
if (jj%2==1){curGr = graphList[0].append(volt_redInh) }
init()
run()
if (jj%2==1){graphList[0].remove(curGr-1) }
storeM_redRect.setcol(jj-1,recv_soma)
storeM_redRect.setcol(jj-1+simul_iter,recv_tuft1)
storeM_redRect.setcol(jj-1+2*simul_iter,recv_tuft2)
storeM_redRect.setcol(jj-1+3*simul_iter,recv_tuft3)
storeM_redRect.setcol(jj-1+4*simul_iter,recv_obl1)
storeM_redRect.setcol(jj-1+5*simul_iter,recv_obl2)
storeM_redRect.setcol(jj-1+6*simul_iter,recv_obl3)
// Wash-in AP5, block NMDA conductance
reset_NMDASyn()
if (jj%2==1){curGr = graphList[0].append(volt_redInh_AP5) }
init()
run()
if (jj%2==1){graphList[0].remove(curGr-1) }
storeM_redRect.setcol(jj-1+7*simul_iter,recv_soma)
storeM_redRect.setcol(jj-1+8*simul_iter,recv_tuft1)
storeM_redRect.setcol(jj-1+9*simul_iter,recv_tuft2)
storeM_redRect.setcol(jj-1+10*simul_iter,recv_tuft3)
storeM_redRect.setcol(jj-1+11*simul_iter,recv_obl1)
storeM_redRect.setcol(jj-1+12*simul_iter,recv_obl2)
storeM_redRect.setcol(jj-1+13*simul_iter,recv_obl3)
reset_AMPASyn()
}
// SAVE OUTPUT
//print2file(storeM_redRect,file_name3,ColLabel)
//set rectifying inhibition back to 100%
GABAweight1=4*GABAweight_total/5
reset_InhSyn()
ActSyn_inh = set_InhSyn_fixed_N(curInh_SR, randShift/3, GABArelP, norm_Pr_inh_SR, shapeInh)
//print "In SR, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]
ActSyn_inh = set_InhSyn_fixed_N(curInh_SLM, randShift/4, GABArelP, norm_Pr_inh_SLM, shapeInh)
//print "In SLM, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]