celsius = 35
v_init=-70
global_ra=200.00 // internal resistivity in ohm-cm
Cm= 1 // specific membrane capacitance in uF/cm^2
Cmy=0.075 // capacitance in myelin
Rm=60000 // specific membrane resistivity in ohm-cm^2
Vleak=-90
Vrest=-70 //
spinelimit=100 // distance beyond which to modify for spines
spinefactor=2.0 // factor by which to change passive properties
setgk = 0.001 // A-type potassium starting density
setokslope = 0 // slope of A-type potassium conductance along individual oblique branches. set to 0 in all simulations
gkdr=0.040 // (S/cm2 = 10000 pS/um2)delayed rectifier density
gkap=setgk // proximal A-type potassium starting density
gkad=setgk // distal A-type potassium starting density
dlimit=300 // cut-off for increase of A-type density
dprox=50 // distance to switch from proximal to distal type
dslope=0.01 // slope of A-type density
okslope = setokslope // oblique potassium channel gradient
okmax = .5 // max potassium channel conductance
ghd=2.e-5 // IH dendisity from Migliore et al 2003
// NMDAR and AMPAR parameters
nmdaTau1 = 3 //dynamics measured at relevant membrane potential range, Fig.S6 in Schulz et al., 2018
nmdaTau2 = 35 // dynamics measured at relevant membrane potential range, Fig.S6 in Schulz et al., 2018; Kampa at al. J Physiol 2004
ampaWeight = 0.00014 // in uS
nmdaWeight = 0.00014 // in uS
gnaSoma = 0 // Sodium Action potential are not included
gnaSr = 0 //
gnaSlm = 0 //
// Inhibition parameters.
inhRev = -70
gtonic = 0
// standard GABA synapse parameters, these will be reset to values specified in Fig8, FigS8, and FigS9[..].hoc
npyTau1 = 2 //
npyTau2 = 7 //
sstTau1 = npyTau1 //
sstTau2 = npyTau2 //
npyWeight = 0.0005 //
sstWeight = 0.0005 //
// GABAB parameters
GABAB_tauD=10
GABA_release_weight=1 // release in mM measured at 2 um from release site
GIRK_conductance_weight = 0.0004