// THIS SCRIPT ASSIGNS ANNOTATION TO SPECIFIC SUBCELLULAR COMPARTMENTS.
forall {
insert id
for (x) {
isTerm_id(x) = 0
isTuft_id(x) = 0
isObl_id(x) = 0
isBas_id(x) = 0
isPrim_id(x) = 0
}
}
objref soma
objref basalList,obliqueList,primList,apicalList,tuftList,dendList,cellList,ca3List,radiatumList
apicalList = new SectionList() // apical list
basalList = new SectionList() // basal list
obliqueList = new SectionList() // oblique list
primList = new SectionList() // primary apical list
tuftList = new SectionList()
dendList = new SectionList() // list of all dendrites
cellList = new SectionList()
ca3List = new SectionList() // list of places that CA3 cells would contact CA1 (SO + SR)
radiatumList = new SectionList() // list of places that CA3 cells would contact CA1 in SR
Cell[0].dend[72] {soma = new SectionRef()}
// Populate apical list.
Cell[0].dend[11] { apicalList.subtree() }
// Populate primary apical list.
Cell[0].dend[11] { primList.append() }
Cell[0].dend[74] { primList.append() }
Cell[0].dend[75] { primList.append() }
Cell[0].dend[76] { primList.append() }
Cell[0].dend[77] { primList.append() } // right before twin bifurcation
Cell[0].dend[78] { primList.append() } // left twin apical
Cell[0].dend[79] { primList.append() }
Cell[0].dend[80] { primList.append() }
Cell[0].dend[82] { primList.append() }
Cell[0].dend[83] { primList.append() }
Cell[0].dend[84] { primList.append() }
Cell[0].dend[85] { primList.append() }
Cell[0].dend[86] { primList.append() }
Cell[0].dend[151] { primList.append() } // right twin apical
Cell[0].dend[154] { primList.append() }
Cell[0].dend[155] { primList.append() }
Cell[0].dend[157] { primList.append() }
Cell[0].dend[160] { primList.append() }
Cell[0].dend[161] { primList.append() }
// By eye, these were the beginning of sections that define the tuft.
Cell[0].dend[87] { tuftList.subtree() }
Cell[0].dend[162] { tuftList.subtree() }
Cell[0].dend[163] { tuftList.subtree() }
// Populate obliques. By previous definitions, this is simply the
// whole apical dendrite less the tuft and the primary apical.
forsec apicalList { obliqueList.append() }
forsec tuftList { obliqueList.remove() }
forsec primList { obliqueList.remove() }
// Populate basals. By previous definitions, this is simply the
// whole tree less the apical dendrite and the soma.
forall { basalList.append() }
forsec apicalList { basalList.remove() }
soma.sec { basalList.remove () }
// Populate all dendrites. This is everything minus the soma.
forall { dendList.append() }
soma.sec { dendList.remove() }
// Populate the whole cell. This is everything.
forall { cellList.append() }
// Populate sections which would contact CA3 axons.
forsec basalList {ca3List.append()}
forsec primList {ca3List.append()}
forsec obliqueList {ca3List.append()}
soma.sec {ca3List.append()}
forsec primList {radiatumList.append()}
forsec obliqueList {radiatumList.append()}
// Declare a function that looks at whether a given SectionRef instance
// (argument 1) is found in a given SectionList (argument 2).
// $o1: SectionRef instance to match.
// $o2: SectionList instance to search over.
// Returns logical of whether section is in list.
func sectionRefInList() {local isInList
isInList = 0
strdef tempSecName
$o1.sec { tempSecName = secname() }
forsec $o2 {
if(abs(strcmp(secname(),tempSecName))<(1e-5)){
isInList=1
}
}
return isInList
}
objref theSec
forall {
theSec = new SectionRef()
for (x){
isTuft_id(x) = sectionRefInList(theSec,tuftList)
isPrim_id(x) = sectionRefInList(theSec,primList)
isObl_id(x) = sectionRefInList(theSec,obliqueList)
isBas_id(x) = sectionRefInList(theSec,basalList)
brOrd_id(x) = -1
}
}
// Assign distances from bifurcation of apical trunk. Note this is used solely
// for obliques, so all other locations get assigned a -1 value.
forall {
insert dists
}
// Generate a function that point out how far something is from main apical.
// INPUT: a SectionRef instance that refers to an oblique branch.
// OUTPUT: the distance from the initial bifurcation of this branch from the
// primary apical branch. [ note : to be consistent with AT data, this
// may not be the distance of the branch itself, but rather from a
// parent branch that stems directly off of the primary apical ]
func oblDist(){localobj theSec,tempParSec
theSec = $o1 // a SectionRef instance
// Traverse down branch until hit parent branch that stems directly
// off the main apical.
// Identify parent.
strdef strPar
while(1){
theSec.parent{
strPar = secname()
}
inList = 0
// Is parent in the obliques list?
forsec obliqueList {
curDist = abs(strcmp(secname(),strPar))
if(curDist<0.0001){
inList = 1
tempParSec = new SectionRef()
}
}
if(inList){
// Repeat; update parent section.
tempParSec.sec { theSec = new SectionRef() }
}else{
break
}
}
// Get the distance from this parent branch to the soma.
soma.sec {
distance()
}
theSec.sec {
theDist = distance(0)
}
return theDist
}
// Generate a function that point out how far along the main apical a given
// section (with associated x value) is.
// INPUT: a SectionRef instance that refers to an main apical branch, and a
// variable (0<= , <=1) corresponding to the x value.
// OUTPUT: the distance of the _middle_ of the section from the soma, divided
// by the distance of the total main apical dendrite
func primDist(){local tuftDist,somaDist,outDist,theX localobj theSec,allTuftDists
theSec = $o1 // a SectionRef instance
theX = $2
allTuftDists = new Vector()
// Calculate minimum distance from tuft to selected section.
theSec.sec { distance() }
forsec tuftList {
tuftDist = distance(0)
allTuftDists.append(tuftDist)
}
tuftDist = allTuftDists.min()
// Calculate distance from selected section to soma.
soma.sec { distance() }
theSec.sec { somaDist = distance(theX) }
outDist = somaDist/(somaDist+tuftDist)
return outDist
}
// Assign main bifurcation distances to obliques, as well as normalised
// primary apical distances.
forall {
for(x) {
theSec = new SectionRef()
// Main bifurcation distance.
if(sectionRefInList(theSec,obliqueList)){
mainbif_dists = oblDist(theSec)
}else{
mainbif_dists = -1
}
// Norm prim apical distance.
if(sectionRefInList(theSec,primList)){
normprim_dists(x) = primDist(theSec,x)
}else{
normprim_dists = -1
}
}
}
forall {
insert syns
npyAt_syns = 0
npyUnif_syns = 0
sstAt_syns = 0
sstUnif_syns = 0
vlsAt_syns = 0
exc_syns = 0
}