TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current ----------
: M.Migliore Jun 1997
NEURON {
SUFFIX kad
USEION k READ ek WRITE ik
RANGE gkabar,gka,ik, ikmax
RANGE ninf,linf,taul,taun
RANGE vhalfn,vhalfl
GLOBAL lmin,nscale,lscale
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(mS) = (millisiemens)
(mol) = (1)
}
PARAMETER {
dt (ms)
v (mV)
ek (mV)
celsius (degC)
temp = 24 (degC)
gkabar (mho/cm2)
vhalfn = -1 (mV)
a0n = .1 (/ms)
zetan = -1.8 (1)
gmn = 0.39 (1)
pw = -1 (1)
tq = -40 (mV)
qq = 5 (mV)
nmin = 0.1 (ms)
nscale = 1
vhalfl = -56 (mV)
a0l = 0.05 (/ms)
zetal = 3 (1)
lmin = 2 (ms)
lscale = 1
q10 = 5
qtl = 1
gml = 1 (1)
}
STATE {
n
l
}
ASSIGNED {
ik (mA/cm2)
ikmax (mA/cm2)
ninf
linf
taul (ms)
taun (ms)
gka (mho/cm2)
qt
}
INITIAL {
rates(v)
n=ninf
l=linf
gka = gkabar*n*l
ik = gka*(v-ek)
ikmax = 0
}
BREAKPOINT {
SOLVE states METHOD cnexp
gka = gkabar*n*l
ik = gka*(v-ek)
if (ik>ikmax) { ikmax = ik }
}
DERIVATIVE states {
rates(v)
n' = (ninf-n)/taun
l' = (linf-l)/taul
}
FUNCTION alpn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
alpn = exp(zeta*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/mol/degC)*(273.16(degC)+celsius)))
}
FUNCTION betn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
betn = exp(zeta*gmn*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/mol/degC)*(273.16(degC)+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(zetal*(v-vhalfl)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/mol/degC)*(273.16(degC)+celsius)))
}
FUNCTION betl(v(mV)) {
: betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4 (degC/mV)/(8.315*(273.16+celsius)))
betl = exp(zetal*gml*(v-vhalfl)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/mol/degC)*(273.16(degC)+celsius)))
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt=q10^((celsius-24)/10(degC))
a = alpn(v)
ninf = 1/(1 + a)
taun = betn(v)/(qt*a0n*(1+a))
if (taun<nmin) {taun=nmin}
taun = taun/nscale
a = alpl(v)
linf = 1/(1+ a)
taul = 0.26(ms/mV)*(v+50)/qtl
if (taul<lmin/qtl) {taul=lmin/qtl}
taul = taul/lscale
}