//establish fast and scaled PV-like kinetics for rectifying and non-rectifying parts of GABA synapses
for ii=1,totVgatAt {
synGABA[ii-1].tau1= scale_factor0*GABAtau1/2
synGABA[ii-1].tau2 = scale_factor0*GABAtau2/2
synGABA[ii-1].slope_factor=0.3
synGABA[ii-1].V50=-150
synGABArect[ii-1].tau1= scale_factor1*GABAtau1
synGABArect[ii-1].tau2 = scale_factor1*GABAtau2
synGABArect[ii-1].slope_factor=slope_factor
synGABArect[ii-1].V50=V50
}
GABAweight0=(GABAweight_total/5) /scale_factor0
GABAweight1=(4*GABAweight_total/5) /scale_factor1
reset_InhSyn()
ActSyn_inh = set_InhSyn_syn_fixed(curInh_SLM, randShift_inh/4, nInhAct_SLM, shapeInh)
print "In SLM, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]
// Create graphs for visualisation.
objref voltFast_d1,voltFast_d2
voltFast_d1 = new Graph()
voltFast_d1.addvar("soma.sec.v(0.5)",2,1)
voltFast_d1.addvar("dend7Ref.sec.v(0.5)",3,1)
voltFast_d1.addvar("dend2Ref.sec.v(0.5)",4,1)
voltFast_d1.label("PV-like NL")
voltFast_d1.exec_menu("Keep Lines")
voltFast_d1.size(stimStart-20,tstop,-75,-5)
voltFast_d2 = new Graph()
voltFast_d2.addvar("soma.sec.v(0.5)",2,1)
voltFast_d2.addvar("dend7Ref.sec.v(0.5)",3,1)
voltFast_d2.addvar("dend1Ref.sec.v(0.5)",4,1)
voltFast_d2.label("PV-like NL")
voltFast_d2.exec_menu("Keep Lines")
voltFast_d2.size(stimStart-20,tstop,-75,-5)
curGr = graphList[0].append(voltFast_d1)
curGr = graphList[0].append(voltFast_d2)
for(jj=1; jj<simul_iter+1; jj=jj+1){
print jj
// Clear excitation and then turn on select synapses.
activateExcitation(cellList,-1,1) // clear excitation
curExc_SLM = activateExcitation(tuftList,jj*nExcAct_SLM,randShift_exc) // activate excitatory synapses
shape_no=(jj/2)-1
if (jj%2==1){shape_no=(jj-1)/2}
ActSyn = set_gluSyn_fixed_N(curExc_SLM, randShift_exc/2, 0.1, norm_Pr_exc, shapeExc[shape_no])
print "In SLM, the number of activated synapses at each pulse are: ",ActSyn.x[0], ", " , ActSyn.x[1], ", " , ActSyn.x[2], ", " , ActSyn.x[3], ", " , ActSyn.x[4]
init()
run()
storeM_fast.setcol(jj-1,recv_soma)
storeM_fast.setcol(jj-1+simul_iter,recv_tuft1)
storeM_fast.setcol(jj-1+2*simul_iter,recv_tuft2)
storeM_fast.setcol(jj-1+3*simul_iter,recv_tuft3)
storeM_fast.setcol(jj-1+4*simul_iter,recv_tuft4)
storeM_fast.setcol(jj-1+5*simul_iter,recv_tuft5)
storeM_fast.setcol(jj-1+6*simul_iter,recv_trunk)
storeM_fast.setcol(jj-1+7*simul_iter,recv_trunk2)
reset_gluSyn()
}
graphList[0].remove_all()
// SAVE OUTPUT
//print2file(storeM_fast,file_name3,ColLabel)
//reset GABA synapses to nonlinear original
for ii=1,totVgatAt {
synGABA[ii-1].tau1= GABAtau1/2
synGABA[ii-1].tau2 = GABAtau2/2
synGABA[ii-1].slope_factor=0.3
synGABA[ii-1].V50=-150
synGABArect[ii-1].tau1= GABAtau1
synGABArect[ii-1].tau2 = GABAtau2
synGABArect[ii-1].slope_factor=slope_factor
synGABArect[ii-1].V50=V50
}
GABAweight0=(GABAweight_total/5)
GABAweight1=4*GABAweight_total/5
reset_InhSyn()
ActSyn_inh = set_InhSyn_syn_fixed(curInh_SLM, randShift_inh/4, nInhAct_SLM, shapeInh)
print "In SLM, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]