//turn off rectification of GABAergic inputs
for ii=1,totVgatAt {
synGABArect[ii-1].slope_factor=0.3
synGABArect[ii-1].V50=-150
}
//reduce synaptic weight to weight at -70 mV
GABAweight1=0.25*4*GABAweight_total/5
reset_InhSyn()
ActSyn_inh = set_InhSyn_syn_fixed(curInh_SLM, randShift_inh/4, nInhAct_SLM, shapeInh)
print "In SLM, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]
// Create graphs for visualisation.
objref voltNoRect_d1,voltNoRect_d2
voltNoRect_d1 = new Graph()
voltNoRect_d1.addvar("soma.sec.v(0.5)",2,1)
voltNoRect_d1.addvar("dend7Ref.sec.v(0.5)",3,1)
voltNoRect_d1.addvar("dend2Ref.sec.v(0.5)",4,1)
voltNoRect_d1.label("Linear")
voltNoRect_d1.exec_menu("Keep Lines")
voltNoRect_d1.size(stimStart-20,tstop,-75,-5)
voltNoRect_d2 = new Graph()
voltNoRect_d2.addvar("soma.sec.v(0.5)",2,1)
voltNoRect_d2.addvar("dend7Ref.sec.v(0.5)",3,1)
voltNoRect_d2.addvar("dend1Ref.sec.v(0.5)",4,1)
voltNoRect_d2.label("Linear")
voltNoRect_d2.exec_menu("Keep Lines")
voltNoRect_d2.size(stimStart-20,tstop,-75,-5)
curGr = graphList[0].append(voltNoRect_d1)
curGr = graphList[0].append(voltNoRect_d2)
for(jj=1; jj<simul_iter+1; jj=jj+1){
print jj
// Clear excitation and then turn on select synapses.
activateExcitation(cellList,-1,1) // clear excitation
curExc_SLM = activateExcitation(tuftList,jj*nExcAct_SLM,randShift_exc) // activate excitatory synapses
shape_no=(jj/2)-1
if (jj%2==1){shape_no=(jj-1)/2}
ActSyn = set_gluSyn_fixed_N(curExc_SLM, randShift_exc/2, 0.1, norm_Pr_exc, shapeExc[shape_no])
print "In SLM, the number of activated synapses at each pulse are: ",ActSyn.x[0], ", " , ActSyn.x[1], ", " , ActSyn.x[2], ", " , ActSyn.x[3], ", " , ActSyn.x[4]
init()
run()
storeM_noRect.setcol(jj-1,recv_soma)
storeM_noRect.setcol(jj-1+simul_iter,recv_tuft1)
storeM_noRect.setcol(jj-1+2*simul_iter,recv_tuft2)
storeM_noRect.setcol(jj-1+3*simul_iter,recv_tuft3)
storeM_noRect.setcol(jj-1+4*simul_iter,recv_tuft4)
storeM_noRect.setcol(jj-1+5*simul_iter,recv_tuft5)
storeM_noRect.setcol(jj-1+6*simul_iter,recv_trunk)
storeM_noRect.setcol(jj-1+7*simul_iter,recv_trunk2)
reset_gluSyn()
}
graphList[0].remove_all()
// SAVE OUTPUT
//print2file(storeM_noRect,file_name2,ColLabel)
//turn on rectification of GABAergic inputs
for ii=1,totVgatAt {
synGABArect[ii-1].slope_factor=3
synGABArect[ii-1].V50=-52
}
//reset synaptic weight
GABAweight1=4*GABAweight_total/5
reset_InhSyn()
ActSyn_inh = set_InhSyn_syn_fixed(curInh_SLM, randShift_inh/4, nInhAct_SLM, shapeInh)
print "In SLM, the number of activated inhibitory synapses at each pulse are: ",ActSyn_inh.x[0], ", " , ActSyn_inh.x[1], ", " , ActSyn_inh.x[2], ", " , ActSyn_inh.x[3], ", " , ActSyn_inh.x[4]