TITLE Cortical M current
:
: M-current, responsible for the adaptation of firing rate and the
: afterhyperpolarization (AHP) of cortical pyramidal cells
:
: First-order model described by hodgkin-Hyxley like equations.
: K+ current, activated by depolarization, noninactivating.
:
: Model taken from Yamada, W.M., Koch, C. and Adams, P.R. Multiple
: channels and calcium dynamics. In: Methods in Neuronal Modeling,
: edited by C. Koch and I. Segev, MIT press, 1989, p 97-134.
:
: See also: McCormick, D.A., Wang, Z. and Huguenard, J. Neurotransmitter
: control of neocortical neuronal activity and excitability.
: Cerebral Cortex 3: 387-398, 1993.
:
: Written by Alain Destexhe, Laval University, 1995
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX im
USEION k READ ek WRITE ik
RANGE gkbar, m_inf, tau_m, i
GLOBAL taumax
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
celsius = 36 (degC)
ek (mV)
gkbar = 1e-6 (mho/cm2)
taumax = 1000 (ms) : peak value of tau
}
STATE {
m
}
ASSIGNED {
ik (mA/cm2)
i (mA/cm2)
m_inf
tau_m (ms)
tau_peak (ms)
tadj
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gkbar * m * (v - ek)
i = ik
}
DERIVATIVE states {
evaluate_fct(v)
m' = (m_inf - m) / tau_m
}
UNITSOFF
INITIAL {
evaluate_fct(v)
m = 0
:
: The Q10 value is assumed to be 2.3
:
tadj = 2.3 ^ ((celsius-36)/10)
tau_peak = taumax / tadj
}
PROCEDURE evaluate_fct(v(mV)) {
if (v < -65 ) { :::::: modification starts here
m_inf = 0
} else{
m_inf = 1 / ( 1 + exptable(-(v+35)/10) )
} :::::: upto here
: m_inf = 1 / ( 1 + exptable(-(v+35)/10) )
tau_m = tau_peak / ( 3.3 * exptable((v+35)/20) + exptable(-(v+35)/20) )
}
UNITSON
FUNCTION exptable(x) {
TABLE FROM -25 TO 25 WITH 10000
if ((x > -25) && (x < 25)) {
exptable = exp(x)
} else {
exptable = 0.
}
}