TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
ek (mV) : must be explicitely def. in hoc
celsius (degC)
gbar=.003 (mho/cm2)
vhalfn = -15: 13 : -25 : -20 (mV)
a0n=0.02 (/ms)
zetan=-3 (1)
gmn=0.7 (1)
nmax=2 (1)
qt=1
}
NEURON {
SUFFIX kdr
USEION k READ ek WRITE ik
RANGE gkdr, i, gbar
RANGE ninf,taun
}
STATE {
n
}
ASSIGNED {
ik (mA/cm2)
i (mA/cm2)
ninf
gkdr
taun
}
BREAKPOINT {
SOLVE states METHOD cnexp
gkdr = gbar*n
ik = gkdr*(v-ek)
i = ik
}
INITIAL {
rates(v)
n=ninf
}
FUNCTION alpn(v(mV)) {
alpn = exp(1.e-3*(-3)*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
betn = exp(1.e-3*(-3)*(0.7)*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
n' = (ninf - n)/taun
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a
a = alpn(v)
if (v < -55 ) { :::::::::::::::::::: -55
ninf = 0
} else{
ninf = 1 / ( 1 + exp( ( vhalfn - v ) / 11 ) )
:ninf = 1 / ( 1 + exp( ( - v + 13 ) / 8.738 ) )
}
taun = betn(v)/(qt*(0.02)*(1+a))
if (taun<nmax) {taun=nmax}
}