TITLE nat
: Na current
: from Jeff M.
: ---------- modified -------M.Migliore may97
NEURON {
SUFFIX nat
USEION na READ ena WRITE ina
:RANGE , i :, ar2
RANGE gbar, gna, i, minf, hinf, mtau, htau : , qinf, thinf
}
PARAMETER {
gbar = 0.010 (mho/cm2)
tha = -30 (mV) : v 1/2 for act
qa = 7.2 (mV) : act slope (4.5)
Ra = 0.4 (/ms) : open (v)
Rb = 0.124 (/ms) : close (v)
thi1 = -45 (mV) : v 1/2 for inact
thi2 = -45 (mV) : v 1/2 for inact
qd = 1.5 (mV) : inact tau slope
qg = 1.5 (mV)
mmin=0.02
hmin=0.5
q10=2
Rg = 0.01 (/ms) : inact recov (v)
Rd = .03 (/ms) : inact (v)
qq = 10 (mV)
tq = -55 (mV)
thinf = -50 (mV) : inact inf slope
qinf = 4 (mV) : inact inf slope
ar2=1 (1) : 1=no inact., 0=max inact.
ena (mV) : must be explicitly def. in hoc
celsius
v (mV)
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ina (mA/cm2)
i (mA/cm2)
gna (mho/cm2)
minf hinf
mtau (ms) htau (ms)
tha1
}
STATE { m h}
BREAKPOINT {
SOLVE states METHOD cnexp
gna = gbar*m*m*m*h
ina = gna * (v - ena)
i = ina
}
INITIAL {
trates(v,ar2)
m=minf
h=hinf
}
LOCAL mexp, hexp
DERIVATIVE states {
trates(v,ar2)
m' = (minf-m)/mtau
h' = (hinf-h)/htau
}
PROCEDURE trates(vm,a2) {
LOCAL a, b, qt
qt = 1.6245
tha1 = tha
a = trap0(vm,tha1,Ra,qa)
b = trap0(-vm,-tha1,Rb,qa)
mtau = 1/(a+b)/qt
if (mtau<mmin) {mtau=mmin}
if (v < -57.5 ) {
minf = 0
} else{
minf = 1 / ( 1 + exp( ( - v - 38.43 ) / 7.2 ) )
}
a = trap0(vm,thi1,Rd,qd)
b = trap0(-vm,-thi2,Rg,qg)
htau = 1/(a+b)/qt
if (htau<hmin) {htau=hmin}
hinf = 1 / ( 1 + exp( ( v + 50 ) / 4 ) )
}
FUNCTION trap0(v,th,a,q) {
if (fabs(v-th) > 1e-6) {
trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
} else {
trap0 = a * q
}
}