TITLE hh_in.mod squid sodium (slow inactivating), potassium, and leak channels
COMMENT
This is the original Hodgkin-Huxley treatment for the set of sodium, potassium, and
leakage channels found in the squid giant axon membrane, incorporating the slow-cumulative
sodium inactivation, as reported by Miles et al., 2005.
PARAMETERS
gnabar = .12 (S/cm2) : maximal conductance for the sodium current.
gkbar = .036 (S/cm2) : maximal conductance for the potassium current.
gl = .0003 (S/cm2) : leak-current conductance.
el = -54. (mV) : reversal potential of the leak-current.
a = 1 (1) : utility variable to switch on (i.e. a==1) and off (i.e. a==0) the slow-adaptation of sodium-current.
REFERENCES
Hodgkin, A.L., Huxley, A.F. (1952). A quantitative description of membrane current and its application conduction and excitation in nerve" J.Physiol. (Lond.) 117:500-544.
Miles, G.B., Dai, Y., and Brownstone, R.M. (2005). Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurones. J Physiol 566.2 (2005) pp 519-532.
Arsiero, M., Luescher, H.-R., Lundstrom, B.N., and Giugliano, M. (2007). The Impact of Input Fluctuations on the Frequency-Current Relationships of Layer 5 Pyramidal Neurons in the Rat Medial Prefrontal Cortex. sumbitted.
AUTHORS
Michele Giugliano & Brian N. Lundstrom, Okinawa, June 5th 2006, and Lausanne Jan 5th 2007.
Modified from the original "hh.hoc" (SW Jaslove 6 March, 1992), provided with each standard distribution of NEURON.
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
? interface
NEURON {
SUFFIX hhin
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT il
RANGE gnabar, gkbar, gl, el, gna, gk, a
GLOBAL minf, hinf, ninf, sinf, mtau, htau, stau, ntau
}
PARAMETER {
gnabar = .12 (S/cm2) <0,1e9>
gkbar = .036 (S/cm2) <0,1e9>
gl = .0003 (S/cm2) <0,1e9>
el = -54. (mV)
a = 1 (1)
}
STATE {
m h n s
}
ASSIGNED {
v (mV)
celsius (degC)
ena (mV)
ek (mV)
gna (S/cm2)
gk (S/cm2)
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
minf hinf sinf ninf
mtau (ms) htau (ms) stau (ms) ntau (ms)
}
:LOCAL mexp, hexp, sexp, nexp
? currents
BREAKPOINT {
SOLVE states METHOD cnexp
gna = gnabar*m*m*m*h*s
ina = gna*(v - ena)
gk = gkbar*n*n*n*n
ik = gk*(v - ek)
il = gl*(v - el)
}
INITIAL {
rates(v)
m = minf
h = hinf
s = sinf
n = ninf
}
? states
DERIVATIVE states {
rates(v)
m' = (minf-m)/mtau
h' = (hinf-h)/htau
s' = (sinf-s)/stau
n' = (ninf-n)/ntau
}
LOCAL q10
? rates
PROCEDURE rates(v(mV)) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
LOCAL alpha, beta, sum
TABLE minf, mtau, hinf, sinf, htau, ninf, stau, ntau DEPEND celsius FROM -100 TO 100 WITH 200
UNITSOFF
q10 = 3^((celsius - 6.3)/10)
:"m" sodium activation system
alpha = .1 * vtrap(-(v+40),10)
beta = 4 * exp(-(v+65)/18)
sum = alpha + beta
mtau = 1/(q10*sum)
minf = alpha/sum
:"h" sodium inactivation system
alpha = .07 * exp(-(v+65)/20)
beta = 1 / (exp(-(v+35)/10) + 1)
sum = alpha + beta
htau = 1/(q10*sum)
hinf = alpha/sum
:"s" sodium inactivation system - according to Miles et al., 2005.
alpha = 0.0077 / (1. + exp( (47.+v)/9. ) )
beta = 0.0077 / (1. + exp( -(47.+v)/9. ) )
sum = alpha + beta
stau = 1/(sum)
sinf = (1-a) + a*alpha/sum
:"n" potassium activation system
alpha = .01*vtrap(-(v+55),10)
beta = .125*exp(-(v+65)/80)
sum = alpha + beta
ntau = 1/(q10*sum)
ninf = alpha/sum
}
FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}else{
vtrap = x/(exp(x/y) - 1)
}
}
UNITSON