COMMENT
The model of Glutamate transporter.
is based on two papers,
from the paper
1. Zhang Z1, Tao Z, Gameiro A, Barcelona S, Braams S, Rauen T, Grewer C.
Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18025-30. Epub 2007 Nov 8.
we determine the basic kinetic scheme for glutamate transporters,
from the paper
2. Bergles, D.E. & Jahr, C.E.
Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19, 1297-1308 (1997).
we corrected the numerical values of the kinetic constants corresponding to the dynamics of glutamate transporters in astrocytes
ENDCOMMENT
NEURON {
SUFFIX GluTrans
RANGE part, C1, C2, C3, C4, C5, C6
GLOBAL k12, k21, k23, k32, k34, k43, k45, k54, k56, k65, k16, k61
GLOBAL Nain, Naout, Kin, Kout, Gluin, charge
RANGE itrans, Gluout, density, itransLog
NONSPECIFIC_CURRENT itrans
}
UNITS {
(l) = (liter)
(nA) = (nanoamp)
(mV) = (millivolt)
(mA) = (milliamp)
(pS) = (picosiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
F = (faraday) (coulombs)
PI = (pi) (1)
}
PARAMETER {
: Rates
k12 = 20 (l /mM /ms)
k21 = 0.1 (/ms)
k23 = 0.015 (l /mM /ms)
k32 = 0.5 (/ms)
k34 = 0.2 (/ms)
k43 = 0.6 (/ms)
k45 = 4 (/ms)
k54 = 10 (l /mM /ms)
k56 = 1 (/ms)
k65 = 0.1 (l /mM /ms)
k16 = 0.0016 (l /mM /ms)
k61 = 2e-4 (l /mM /ms)
Nain = 15 (mM/l)
Naout = 150 (mM/l)
Kin = 120 (mM/l)
Kout = 3 (mM/l)
Gluin = 0.3 (mM/l)
Gluout = 20e-6 (mM/l)
density =1e12 : (/cm2) : 10000 per um2
charge = 1.6e-19 (coulombs)
}
ASSIGNED {
v (mV) : voltage
itrans (mA/cm2) :
surf (cm2)
volin (liter)
volout (liter)
itransLog
}
STATE {
: Transporter states (all fractions)
:
C1 (/cm2) :
C2 (/cm2) :
C3 (/cm2) :
C4 (/cm2) :
C5 (/cm2) :
C6 (/cm2)
}
INITIAL {
C1= 0.9074
C2= 0.0199
C3= 0.0435
C4= 0.0103
C5= 0.0142
C6= 0.0047
volin = 1
volout = 1
surf = 1
}
BREAKPOINT {
SOLVE kstates METHOD sparse
itrans=-charge*density*(1e+006)*(0.6*(C1*k16*Kout*u(v,0.6)-C6*k61*Kin) -0.1*(C1*k12*Gluout*u(v,-0.1)-C2*k21)+0.5*(C2*k23*Naout*u(v,0.5)-C3*k32)+0.4*( C3*k34-C4*k43)+0.6*(C5*k56*u(v,0.6)-C6*k65*Nain) )
: itransLog=log(-itrans*(1e+006))
:itrans=-charge*density*(1e+006)*(0.6*(C1*k16*Kout*u(v,0.6)-C6*k61*Kin) +0.4*( C3*k34-C4*k43)+0.6*(C5*k56*u(v,0.6)-C6*k65*Nain) )
}
KINETIC kstates {
COMPARTMENT volin { Nain Kin Gluin}
COMPARTMENT volout { Naout Kout Gluout}
: COMPARTMENT surf { C1 C2 C3 C4 C5 C6}
: surf=1 : !!!!!!!
~ C1 <-> C2 (Gluout*k12*u(v,-0.1), k21)
~ C2 <-> C3 (Naout*k23*u(v,0.5),k32)
~ C3 <-> C4 (k34*u(v,0.4),k43)
~ C4 <-> C5 (k45,k54*Gluin)
~ C5 <-> C6 (k56*u(v,0.6),k65*Nain)
~ C6 <-> C1 (Kin*k61, k16*u(v,0.6)*Kout)
CONSERVE C1+C2+C3+C4+C5+C6= 1
}
FUNCTION u(x(mV), th) {
u = exp(th*x/(2*(26.7 (mV))))
}