TITLE Sodium Current
COMMENT
Author: Ronald van Elburg
Taken from model for fast spiking neuron in J. Tegner, A. Compte,
X.J. Wang, J. Neurosci. 22(20): 9053-9062, 2002
Modifications:
ID Date Authors Email Description
M_001
ENDCOMMENT
UNITS {
: (Abbreviation)= (Unit)
(mV) = (millivolt)
(mA) = (milliamp)
(pS) = (picosiemens)
(um) = (micron)
: Abbreviation = (Constant) (Unit)
}
NEURON {
SUFFIX NaPyr
USEION na READ ena WRITE ina
RANGE gbar, ina, minf,malpha, mbeta
GLOBAL v_table_min, v_table_max
}
PARAMETER {
: Parameter =Initial Value (Units) Description
gbar = 350 (pS/um2)
v (mV)
ena (mV)
phih = 5 (1)
phim = 5 (1)
: Table Settings
v_table_min = -120 (mV)
v_table_max = 100 (mV)
}
ASSIGNED {
: Parameter Units Description
ina (mA/cm2)
:minf (1) :Steady state activation approximation
halpha (1/ms)
hbeta (1/ms)
malpha (1/ms) :Dynamic activation
mbeta (1/ms) :Dynamic (de)activation
}
STATE {
h (1)
m (1)
}
BREAKPOINT {
settables(v)
SOLVE states METHOD cnexp
:ina =(1e-4)*gbar * minf * minf * minf * h * (v - ena) :Steady state activation approximation
ina =(1e-4)*gbar * m * m* m * h * (v - ena) :Dynamic activation
}
INITIAL {
settables(v)
h=halpha/(halpha+hbeta)
m=malpha/(malpha+mbeta)
}
DERIVATIVE states {
h' =phih* ( halpha*(1-h) -hbeta*h)
m' =phim* ( malpha*(1-m) - mbeta*m) :Dynamic activation
}
UNITSOFF
PROCEDURE settables(v (mV)) {
TABLE halpha, hbeta, malpha, mbeta FROM v_table_min TO v_table_max WITH 961 :For dynamic activation add malpha, mbeta; For steady state activation approximation add minf
halpha = 0.128*(exp(-(v+50)/18))
hbeta = 4/(1+exp(-0.2*(v+27)))
malpha = 0.32*vtrap(-(v+54),0.25)
mbeta = 0.28*vtrap((v+27),0.2)
:minf = malpha/(malpha+mbeta) :Steady state activation approximation
}
UNITSON
FUNCTION vtrap(x, k) {
if (fabs(x) < 1e-6) {
vtrap = 1/(k * exp(k*x))
} else {
vtrap = x / (exp(k*x) - 1)
}
}