TITLE first_GABA_recept_model (first order kinetics )
COMMENT
This program just explore basics charactieristics of GABAergic synapses
in the frame of a simple integrate and fire model. Modified from original of R. van Elburg and based on
Bush PC, Prince DA, Miller KD (1999),J Neurophysiol 82:1748-58
This is mod-file describes a point process with first order kinetics, that can act as several
synapses described by first order kinetics.
Author:
Taken from model for pyramidal cells in J. Tegner, A. Compte,
X.J. Wang, J. Neurosci. 22(20): 9053-9062, 2002
X.J. Wang, J. Neurosci. 21(19):9587-9603
Modifications:
ID Date Authors Email Description
M_001
ENDCOMMENT
NEURON {
POINT_PROCESS Gaba_syn
RANGE e, i, g
RANGE tau_d, frac_rec
RANGE area_cell
RANGE tau_1 : artificion pero realmente pertenece a gabafacil es el decay time dort
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(uS) = (microsiemens)
(um) = (micron)
}
PARAMETER {
: e = -90 mV for inhibitory synapses,
: 0 mV for excitatory
:e = :-90
e=-80 (mV): value of boergers and koppel's paper
tau_1 = 3 (ms):ojo esto es un artificio, no se usa, es solo para incluir el archivo facilmente en hoc!!!!!!!!!!!
: tau_d decay time, frac_rec usage fraction of receptors
tau_d = 10 (ms) < 1e-9, 1e9 > :
frac_rec = 0.9 (1) <0,1>
: maximum coductance
g=1e-5 (uS/um2) : this must be multiplied by the area to give actual walue
: since the conductance density is gie=5-7mS/cm2 gii=15-20mS/cm2
: Jensen et al. NeuroImage 26 (2005) 347-355
:cell surface area
area_cell= 1 (um2)
}
ASSIGNED {
v (mV)
i (nA)
g_eff (uS)
}
STATE {
s
}
INITIAL {
s=0 :
g_eff=g*area_cell
}
BREAKPOINT {
SOLVE state METHOD cnexp
i =g_eff*s*(v - e) :
}
DERIVATIVE state {
s' = -s/tau_d
}
NET_RECEIVE(weight,s_tp,tp(ms)) {:tp time of previous spike
: Calculate current value single synapse state variable at t-epsilon
UNITSOFF
:printf("%g %g\t",t,s_tp)
s_tp =s_tp*exp(-(t-tp)/tau_d)
:s_tp =s_tp*weight*exp(-(t-tp)/tau_d)
:printf("%g\t",s_tp)
UNITSON
: To make sure that we add the same amount to the exact single synapse state variable and the summed
: state variable we should first update the summed variable and then the single synapse state variable
s=s + frac_rec*weight*(1-s_tp)
s_tp = s_tp + frac_rec*(1-s_tp)
:printf("%g %g %g %g\n",weight,s_tp,s,frac_rec)
tp=t
}