TITLE first_GABA_recept_model (first order kinetics )
COMMENT
This program just explores basics charactieristics of GABAergic synapses including facilitation
according to Synchrony generation in recurrent networks with frequency-dependent synapses
Journal of Neuroscience 20:RC50:1-5, 2000. Originally implemented by Carnevale T.
addapted to be used as GABA_A synapse O. J. Avella
ENDCOMMENT
NEURON {
POINT_PROCESS Gaba_synf
RANGE e, i, g, area_cell : => g not in use
RANGE tau_d, frac_rec
RANGE tau_1, tau_rec, tau_facil, U, u0
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(uS) = (microsiemens)
(um) = (micron)
}
PARAMETER {
:==============================================================================================
: unused
tau_d = 10 (ms) < 1e-9, 1e9 > : tau_d decay time,
frac_rec = 0.9 (1) <0,1> :frac_rec usage fraction of receptors
area_cell= 1 (um2) :cell surface area
g=1 (1)
:==============================================================================================
:facilitation (used)
e=-80 (mV) : value of boergers and koppel's paper
tau_1 = 3 (ms) < 1e-9, 1e9 > : tau_1 was the same for inhibitory and excitatory synapses in the models used by T et al
tau_rec = 100 (ms) < 1e-9, 1e9 > : tau_rec = 100 ms for inhibitory synapses/800 ms for excitatory,
tau_facil =0: 1000 (ms) < 0, 1e9 > : tau_facil = 1000 ms for inhibitory synapses/0 ms for excitatory
u0 = 0 (1) < 0, 1 > : initial value for the "facilitation variable"
U = 0.04 (1) < 0, 1 > : U = 0.04/0.5 i/e syn; the (1) needed for < 0, 1 > ...
:to be effective in limiting the values of U and u0
:==============================================================================================
}
ASSIGNED {
v (mV)
i (nA)
x
}
STATE {
geff (siemens)
}
INITIAL {
geff=0
}
BREAKPOINT {
SOLVE state METHOD cnexp
i=geff*(v - e)
}
DERIVATIVE state {
geff'=-geff/tau_1
}
NET_RECEIVE(w (us),y, z, u,tp(ms)) {:tp time of previous spike
INITIAL {
: these are in NET_RECEIVE to be per-stream
y = 0
z = 0
u = u0 : or u = 0 for no-facilitation
tp = t
}
: first calculate z at event- based on prior y and z
z = z*exp(-(t - tp)/tau_rec)
z = z + ( y*(exp(-(t - tp)/tau_1) - exp(-(t - tp)/tau_rec)) / ((tau_1/tau_rec)-1) )
: now calc y at event-
y = y*exp(-(t - tp)/tau_1)
x = 1-y-z
:(I DON'T UNDERSTAND how Carnevale arrived to the former solution; do you Ronald?, could you explain me? )
: calc u at event--
if (tau_facil > 0) {u = u*exp(-(t - tp)/tau_facil)} else {u = U}
if (tau_facil > 0) {u= u + U*(1-u)} :updates facil. factor @ event arrival
geff=geff + w*x:*u :updates conductance @ event arrival
y= y + x:*u :updates number of active "resources @ event arrival"
tp = t
}