%Author: OSCAR jAVIER AVELLA GONZALEZ
% convolution of a column external vector with an alpha function
% modified and adapted from Poil en van-Elburg's file
t_simul=4e4%%12e4; % total simulated time in milliseconds (NEURONs units)
n=6; % exponent's multiplicative factor
% to define the window size
alpha=0.27; % alpha factor to multiply the exponent of
% the exponential and to determine the size
% of the temporal window
w_size=floor(n/alpha); % takes the closest integer
% to the argument toward -infty
fs=1000/time_step; %%166.67;% sampling frequency Hz
tau=1000/fs; % temporal window resolution
% tau=1/f_sampling (fs) [tau]=>ms
% that is the reason for the
% 1000 factor
tmax=t_simul/tau; % (ms), the same as the NEURON tstop
aa=0; % elements counter of the spikes-vector a
input1=b2;%%input('Please, supply the input vector\n'); % input data
idx_1=0;%%input('and index population 0 for E 1 for I vector\n');
% % thsese numerical values correspond to the excitatory population
tau_vect = 0:tau:w_size;
omega = alpha.*alpha.*tau_vect.*exp(-alpha.*tau_vect);% "achtung"
% here we are
% creating a new
% complete "vector"
omega = (1/max(omega)).*omega; % normalized omega which is actually
% the alpha function in the whole
% interval, with the required time
% resolution.
Outp =zeros(1,(size(input1,2))+floor(w_size/tau)); % vector to SAVE the
% convoluted data
for i=1:size(input1,2) % this cycle
Outp(i:(i+floor(w_size/tau)))=Outp(i:(i+floor(w_size/tau)))+input1(i)*omega; % performs the
end
%Additional computation to determine the desynchronuization threshold for
%the waning period
%ISI vector for the E population without 0 spike elements
clear k
kc=0;
for(i=1:size(a1,2))
if(a1(i)>0)
kc=kc+1;
k(kc)=a1(i);
end
end % convolution
mk=median(k);
fprintf('Detection threshold E cells = %g\n',mk )
%ISI vector for the I population without 0 spike elements
clear k1
kc=0;
for(i=1:size(a2,2))
if(a2(i)>0)
kc=kc+1;
k1(kc)=a2(i);
end
end
mk1=median(k1);
fprintf('Detection threshold I cells = %g\n',mk1)