%WAVELET  1D Wavelet transform with optional singificance testing
%
%   [WAVE,PERIOD,SCALE,COI] = wavelet(Y,DT,PAD,DJ,S0,J1,MOTHER,PARAM)
%
%   Computes the wavelet transform of the vector Y (length N),
%   with sampling rate DT.
%
%   By default, the Morlet wavelet (k0=6) is used.
%   The wavelet basis is normalized to have total energy=1 at all scales.
%
%
% INPUTS:
%
%    Y = the time series of length N.
%    DT = amount of time between each Y value, i.e. the sampling time.
%
% OUTPUTS:
%
%    WAVE is the WAVELET transform of Y. This is a complex array
%    of dimensions (N,J1+1). FLOAT(WAVE) gives the WAVELET amplitude,
%    ATAN(IMAGINARY(WAVE),FLOAT(WAVE) gives the WAVELET phase.
%    The WAVELET power spectrum is ABS(WAVE)^2.
%    Its units are sigma^2 (the time series variance).
%
%
% OPTIONAL INPUTS:
% 
% *** Note *** setting any of the following to -1 will cause the default
%               value to be used.
%
%    PAD = if set to 1 (default is 0), pad time series with enough zeroes to get
%         N up to the next higher power of 2. This prevents wraparound
%         from the end of the time series to the beginning, and also
%         speeds up the FFT's used to do the wavelet transform.
%         This will not eliminate all edge effects (see COI below).
%
%    DJ = the spacing between discrete scales. Default is 0.25.
%         A smaller # will give better scale resolution, but be slower to plot.
%
%    S0 = the smallest scale of the wavelet.  Default is 2*DT.
%
%    J1 = the # of scales minus one. Scales range from S0 up to S0*2^(J1*DJ),
%        to give a total of (J1+1) scales. Default is J1 = (LOG2(N DT/S0))/DJ.
%
%
% OPTIONAL OUTPUTS:
%
%    PERIOD = the vector of "Fourier" periods (in time units) that corresponds
%           to the SCALEs.
%
%    SCALE = the vector of scale indices, given by S0*2^(j*DJ), j=0...J1
%            where J1+1 is the total # of scales.
%
%    COI = if specified, then return the Cone-of-Influence, which is a vector
%        of N points that contains the maximum period of useful information
%        at that particular time.
%        Periods greater than this are subject to edge effects.
%        This can be used to plot COI lines on a contour plot by doing:
%            IDL>  CONTOUR,wavelet,time,period
%            IDL>  PLOTS,time,coi,NOCLIP=0
%
%
%----------------------------------------------------------------------------
%   Copyright (C) 1995-1998, Christopher Torrence and Gilbert P. Compo
%   University of Colorado, Program in Atmospheric and Oceanic Sciences.
%   This software may be used, copied, or redistributed as long as it is not
%   sold and this copyright notice is reproduced on each copy made.  This
%   routine is provided as is without any express or implied warranties
%   whatsoever.
%
% Notice: Please acknowledge the use of this program in any publications:
%   ``Wavelet software was provided by C. Torrence and G. Compo,
%     and is available at URL: http://paos.colorado.edu/research/wavelets/''.
%
% Notice: Please acknowledge the use of the above software in any publications:
%    ``Wavelet software was provided by C. Torrence and G. Compo,
%      and is available at URL: http://paos.colorado.edu/research/wavelets/''.
%
% Reference: Torrence, C. and G. P. Compo, 1998: A Practical Guide to
%            Wavelet Analysis. <I>Bull. Amer. Meteor. Soc.</I>, 79, 61-78.
%
% Please send a copy of such publications to either C. Torrence or G. Compo:
%  Dr. Christopher Torrence               Dr. Gilbert P. Compo
%  Advanced Study Program                 NOAA/CIRES Climate Diagnostics Center
%  National Center for Atmos. Research    Campus Box 449
%  P.O. Box 3000                          University of Colorado at Boulder
%  Boulder CO 80307--3000, USA.           Boulder CO 80309-0449, USA.
%  E-mail: torrence@ucar.edu              E-mail: gpc@cdc.noaa.gov
%----------------------------------------------------------------------------
function [wave,period,scale,coi] = ...
	wavelet33(Y,dt,pad,dj,s0,J1,mother,param)

if (nargin < 8), param = -1; end
if (nargin < 7), mother = -1; end
if (nargin < 6), J1 = -1; end
if (nargin < 5), s0 = -1; end
if (nargin < 4), dj = -1; end
if (nargin < 3), pad = 0; end
if (nargin < 2)
	error('Must input a vector Y and sampling time DT')
end

n1 = length(Y);


if (s0 == -1), s0=2*dt; end
if (dj == -1), dj = 1./4.; end
if (J1 == -1), J1=fix((log(n1*dt/s0)/log(2))/dj); end
if (mother == -1), mother = 'MORLET'; end

%....construct time series to analyze, pad if necessary
x(1:n1) = Y - mean(Y);
if (pad == 1)
	base2 = fix(log(n1)/log(2) + 0.4999);   % power of 2 nearest to N
	x = [x,zeros(1,2^(base2+1)-n1)];
end
n = length(x);

%....construct wavenumber array used in transform [Eqn(5)]
k = 1:fix(n/2);
k = k.*((2.*pi)/(n*dt));
k = [0., k, -k(fix((n-1)/2):-1:1)];

%....compute FFT of the (padded) time series
f = fft(x);    % [Eqn(3)]

%....construct SCALE array & empty PERIOD & WAVE arrays
ddd=0;
for kk=s0:dj:J1;
ddd=ddd+1;
scale(ddd)=1/kk;
end
scale = fliplr(scale);
period = scale;
length(scale);
wave = zeros(length(scale),n);  % define the wavelet array
wave = wave + i*wave;  % make it complex

% loop through all scales and compute transform
for a1 = 1:length(scale)
	[daughter,fourier_factor,coi,dofmin]=wave_bases(mother,k,scale(a1),param);	
	wave(a1,:) = ifft(f.*daughter);  % wavelet transform[Eqn(4)]
end

period = fourier_factor*scale;
coi = coi*dt*[1E-5,1:((n1+1)/2-1),fliplr((1:(n1/2-1))),1E-5];  % COI [Sec.3g]
wave = wave(:,1:n1);  % get rid of padding before returning

return