COMMENT
Deterministic model of kinetics and voltage-dependence of Ih-currents
in layer 5 pyramidal neuron, see Kole et al., 2006. Implemented by
Stefan Hallermann.
Added possibility to shift voltage activiation (vshift) and allowed access to gating variables, Armin Bahl 2009
Predominantly HCN1 / HCN2
ENDCOMMENT
TITLE Ih-current
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(mM) = (milli/liter)
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
dt (ms)
v (mV)
ehd=-47 (mV)
gbar=0 (pS/um2)
gamma_ih :not used
seed :not used
vshift = 0
}
NEURON {
SUFFIX ih
NONSPECIFIC_CURRENT Iqq
RANGE Iqq,gbar,vshift,ehd, qtau, qinf, gq
}
STATE {
qq
}
ASSIGNED {
Iqq (mA/cm2)
qtau (ms)
qinf
gq (pS/um2)
}
INITIAL {
qq=alpha(v-vshift)/(beta(v-vshift)+alpha(v-vshift))
qtau = 1./(alpha(v-vshift) + beta(v-vshift))
qinf = alpha(v)/(alpha(v-vshift) + beta(v-vshift))
}
BREAKPOINT {
SOLVE state METHOD cnexp
qtau = 1./(alpha(v-vshift) + beta(v-vshift))
qinf = alpha(v-vshift)/(alpha(v-vshift) + beta(v-vshift))
gq = gbar*qq
Iqq = (1e-4)*gq*(v-ehd)
}
FUNCTION alpha(v(mV)) {
alpha = 0.001*6.43*(v+154.9)/(exp((v+154.9)/11.9)-1)
: parameters are estimated by direct fitting of HH model to
: activation time constants and voltage activation curve
: recorded at 34C
}
FUNCTION beta(v(mV)) {
beta = 0.001*193*exp(v/33.1)
}
DERIVATIVE state { : exact when v held constant; integrates over dt step
qq' = (1-qq)*alpha(v-vshift) - qq*beta(v-vshift)
}