: kdr.mod is the delayed rectifier K+ current from
: Herzoz, Cummins, and Waxman '01, parameter assignments and formula's
: from page 1353
: implemented by Tom Morse version 2/25/07
NEURON {
SUFFIX kdr
NONSPECIFIC_CURRENT i
RANGE gbar, ek
RANGE tau_n, n
}
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar = 0.000878 :0.0005 (S/cm2)
ek = -85 (mV) :
: Baker 2005 values
A_anF = 0.001265 (/ms) : 0.00798 Baker '05 : A for alpha n
B_anF = 14.273 (mV) : 72.2 Baker '05
C_anF = 10 (mV) : 1.1 Baker '05
: Baker '05 uses different (parameterized) function than below beta_n
A_bnF = 0.125 (/ms): A for beta n
B_bnF = 55 (mV)
C_bnF = -2.5 (mV)
: Bostok et al. 1991 values
: A_anF = 0.129 (/ms) : A for alpha n
: B_anF = -53 (mV)
: C_anF = 10 (mV)
: A_bnF = 0.324 (/ms) : A for beta n
: B_bnF = -78 (mV)
: C_bnF = 10 (mV)
}
ASSIGNED {
v (mV) : NEURON provides this
i (mA/cm2)
g (S/cm2)
tau_n (ms)
ninf
}
STATE { n }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * n
i = g * (v-ek)
}
INITIAL {
: assume that equilibrium has been reached
n = alphan(v)/(alphan(v)+betan(v))
}
DERIVATIVE states {
rates(v)
n' = (ninf - n)/tau_n
}
FUNCTION alphan(Vm (mV)) (/ms) {
if (-Vm-B_anF != 0) {
alphan=A_anF*(Vm+B_anF)/(1-exp((-Vm-B_anF)/C_anF))
} else {
alphan=A_anF*C_anF
}
}
FUNCTION betan(Vm (mV)) (/ms) {
betan=A_bnF*exp((Vm+B_bnF)/C_bnF)
}
FUNCTION rates(Vm (mV)) (/ms) {
tau_n = 1.0 / (alphan(Vm) + betan(Vm))
: ninf = alphan(Vm) * tau_n : this line does not reflect p. 1353
ninf = 1/(1+exp((Vm+14.62)/-18.38)) : correction by Tom Andersson
}