//genesis /* FILE INFORMATION ** The 1991 Traub set of voltage and concentration dependent channels ** Implemented as tabchannels by : Dave Beeman ** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson ** Journal of Neurophysiology, Vol. 66, p. 635 (1991) ** ** This file depends on functions and constants defined in defaults.g ** As it is also intended as an example of the use of the tabchannel ** object to implement concentration dependent channels, it has extensive ** comments. Note that the original units used in the paper have been ** converted to SI (MKS) units. Also, we define the ionic equilibrium ** potentials relative to the resting potential, EREST_ACT. In the ** paper, this was defined to be zero. Here, we use -0.060 volts, the ** measured value relative to the outside of the cell. */ /* November 1999 update for GENESIS 2.2: Previous versions of this file used a combination of a table, tabgate, and vdep_channel to implement the Ca-dependent K Channel - K(C). This new version uses the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. This allows these channels to be used with the fast hsolve chanmodes > 1. */ // Now updated for Traub et al. J Neurophysiol 2003;89:909-921. // And for LTS and FS interneurons - Cunningham et al. PNAS 2004;101:7152-7157. // CONSTANTS float EREST_ACT = -0.070 /* cell resting potential */ float ENAB5FS = 0.120 + EREST_ACT // 0.050 float EKB5FS = -0.03 + EREST_ACT // -0.100 float ECAB5FS = 0.195 + EREST_ACT // 0.125 float EARB5FS = 0.030 + EREST_ACT // -0.040 float SOMA_A = 3.320e-9 // soma area in square meters /* For these channels, the maximum channel conductance (Gbar) has been calculated using the CA3 soma channel conductance densities and soma area. Typically, the functions which create these channels will be used to create a library of prototype channels. When the cell reader creates copies of these channels in various compartments, it will set the actual value of Gbar by calculating it from the cell parameter file. */ //======================================================================== // Tabchannel gNa-transient, gNa(F) 2005/03 //======================================================================== function make_NaF10 if ({exists NaF10}) return end create tabchannel NaF10 setfield NaF10 \ Ek 0.05 \ Ik 0 \ Xpower 3 \ Ypower 1 setfield NaF10 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaF10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if ({ v -2.5 } < -30 ) tau = 0.0125 + 0.1525 * { exp { {{v - 2.5} + 30} / 10} } else tau = 0.02 + 0.145 * { exp { -1 * {{v - 2.5} + 30} / 10} } end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp { { -1 * {v - 2.5} - 38} / 10}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF10 X_A->table[{i}] {alpha} setfield NaF10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF10 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call NaF10 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation... tau = 0.225 + 1.125 / { 1 + { exp {{v + 37} / 15} } } v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp {{v + 58.3} / 6.7}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF10 Y_A->table[{i}] {alpha} setfield NaF10 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF10 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03 //======================================================================== function make_NaP10 if ({exists NaP10}) return end create tabchannel NaP10 setfield NaP10 \ Ek 0.05 \ Ik 0 \ Xpower 1 setfield NaP10 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaP10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v < -40 ) tau = 0.025 + 0.14 * {exp {{ v + 40 }/10}} else tau = 0.02 + 0.145 * {exp {-1 * {v + 40}/ 10}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -10, Vhalf = -48 in physiol units // A = 1, B = -0.01, Vhalf = -0.048 inf = 1 / ( {exp {(v + 0.048) / -0.01}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaP10 X_A->table[{i}] {alpha} setfield NaP10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaP10 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel Anomalous Rectifier, gAR 2005/03 //======================================================================== function make_AR10 if ({exists AR10}) return end create tabchannel AR10 setfield AR10 \ Ek -0.04 \ Ik 0 \ Xpower 1 setfield AR10 \ Gbar 2.5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call AR10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) float tau v = v * 1000 // v to units of equation tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 5.5, Vhalf = -75, in units: Physiological Units // A = 1, B = 0.0055, Vhalf = -0.075 inf = 1 / ( {exp {(v + 0.075) / 0.0055}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield AR10 X_A->table[{i}] {alpha} setfield AR10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield AR10 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-delayed rectifier, gK(DR) 2005/03 //======================================================================== function make_KDR10 if ({exists KDR10}) return end create tabchannel KDR10 setfield KDR10 \ Ek {EKB5FS} \ Ik 0 \ Xpower 4 setfield KDR10 \ Gbar 1250 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KDR10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v <= -10 ) tau = 0.25 + 4.35 * {exp {{ v + 10 }/10}} else tau = 0.25 + 4.35 * {exp {{- v - 10}/ 10}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -11.5, Vhalf = -27, in physiological units // A = 1, B = -0.0115, Vhalf = -0.027 inf = 1 / ( {exp {(v + 0.027) / -0.0115}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KDR10 X_A->table[{i}] {alpha} setfield KDR10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KDR10 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-transient, gK(A) 2005/03 //======================================================================== function make_KA10 if ({exists KA10}) return end create tabchannel KA10 setfield KA10 \ Ek {EKB5FS} \ Ik 0 \ Xpower 4 \ Ypower 1 setfield KA10 \ Gbar 300 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KA10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -8.5, Vhalf = -60, in units: Physiological Units // A = 1, B = -0.0085, Vhalf = -0.06 inf = 1 / ( {exp {(v + 0.06) / -0.0085}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA10 X_A->table[{i}] {alpha} setfield KA10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA10 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call KA10 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -63.0 ) tau = 0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}} else tau = 9.5 end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 6, Vhalf = -78, in units: Physiological Units // A = 1, B = 0.006, Vhalf = -0.078 inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA10 Y_A->table[{i}] {alpha} setfield KA10 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA10 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK2-slow, gK2 2005/03 //======================================================================== function make_K210 if ({exists K210}) return end create tabchannel K210 setfield K210 \ Ek {EKB5FS} \ Ik 0 \ Xpower 1 \ Ypower 1 setfield K210 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call K210 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -17, Vhalf = -10, in physiological units // A = 1, B = -0.017, Vhalf = -0.01 inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K210 X_A->table[{i}] {alpha} setfield K210 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K210 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call K210 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 10.6, Vhalf = -58, in units: Physiological Units // A = 1, B = 0.0106, Vhalf = -0.058 inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1) // alpha & beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K210 Y_A->table[{i}] {alpha} setfield K210 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K210 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03 //======================================================================== function make_KM10 if ({exists KM10}) return end create tabchannel KM10 setfield KM10 \ Ek {EKB5FS} \ Ik 0 \ Xpower 1 setfield KM10 \ Gbar 75 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KM10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha // A = 0.02, B = -5, Vhalf = -20, in units: Physiological Units // A = 20, B = -0.005, Vhalf = -0.02 alpha = 20 / ( {exp {(v + 0.02) / -0.005}} + 1) // beta float beta // A = 0.01, B = -18, Vhalf = -43, in physiological units // A = 10, B = -0.018, Vhalf = -0.043 beta = 10 * {exp {(v + 0.043) / -0.018}} // alpha and beta float tau = 1/(alpha + beta) setfield KM10 X_A->table[{i}] {alpha} setfield KM10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KM10 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03 //======================================================================== function make_CaL10 if ({exists CaL10}) return end create tabchannel CaL10 setfield CaL10 \ Ek 0.125 \ Ik 0 \ Xpower 2 \ Ypower 1 setfield CaL10 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call CaL10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.204 + 0.333 / { {exp {{15.8 + v} / 18.2 }} + {exp {{- v - 131} / 16.7}} } v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -6.2, Vhalf = -56.0, in physiol units // A = 1, B = -0.0062, Vhalf = -0.056 inf = 1 / ( {exp {(v + 0.056) / -0.0062}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL10 X_A->table[{i}] {alpha} setfield CaL10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL10 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call CaL10 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v < -81.0 ) tau = 0.333 * {exp {{ v + 466 } / 66.6}} else tau = 9.32 + 0.333 * {exp {{ - v - 21 } / 10.5}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 4, Vhalf = -80, in physiol units // A = 1, B = 0.004, Vhalf = -0.08 inf = 1 / ( {exp {(v + 0.08) / 0.004}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL10 Y_A->table[{i}] {alpha} setfield CaL10 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL10 Y_A->calc_mode 1 Y_B->calc_mode 1 end //========================================================================== // Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05 //========================================================================== function make_CaH10 if ({exists CaH10}) return end create tabchannel CaH10 setfield CaH10 \ Ek 0.125 \ Ik 0 \ Xpower 2 setfield CaH10 \ Gbar 5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call CaH10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) float alpha // A = 1.6, B = -13.888889, Vhalf = 5 in physiological units // A = 1600, B = -0.013888889000000001, Vhalf = 0.005 alpha = 1600 / ( {exp {(v - 0.005) / -0.013888889000000001}} + 1) // beta float beta // A = 0.1, B = -5, Vhalf = -8.9 in physiol. units // A = 100, B = -0.005, Vhalf = -0.0089 if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6) beta = 100 * (1 + (v + 0.0089)/-0.005/2) else beta = 100 * ((v + 0.0089) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}}) end // alpha & beta float tau = 1/(alpha + beta) setfield CaH10 X_A->table[{i}] {alpha} setfield CaH10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaH10 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Ca conc, Traub et al. J Neurophysiol 2003;89:909-921. //======================================================================== /**************************************************************************** Next, we need an element to take the Calcium current calculated by the Ca channel and convert it to the Ca concentration. The "Ca_concen" object solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As it is easy to make mistakes in units when using this Calcium diffusion equation, the units used here merit some discussion. With Ca_base = 0, this corresponds to Traub's diffusion equation for concentration, except that the sign of the current term here is positive, as GENESIS uses the convention that I_Ca is the current flowing INTO the compartment through the channel. In SI units, the concentration is usually expressed in moles/m^3 (which equals millimoles/liter), and the units of B are chosen so that B = 1/(ion_charge * Faraday * volume). Current is expressed in amperes and one Faraday = 96487 coulombs. However, in this case, Traub expresses the concentration in arbitrary units, current in microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the 2003 J Neurophys paper). If we use the same concentration units, but express current in amperes and tau in seconds, our B constant is then 10^12 times the constant (called "phi") used in the paper. The actual value used will typically be determined by the cell reader from the cell parameter file (will vary inversely with surface area of compartment). However, for the prototype channel we wlll use Traub's corrected value for the soma. (An error in the paper gives it as 17,402 rather than 17.402.) In our units, this will be 17.402e12. ****************************************************************************/ function make_Ca_s10 if ({exists Ca_s10}) return end create Ca_concen Ca_s10 // params for Ca pool model setfield Ca_s10 \ tau { 1.0 / 20 } \ Ca_base 0 addfield Ca_s10 addmsg1 setfield Ca_s10 \ addmsg1 "../CaH10 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ /****************************************************************************/ function make_Ca_d10 if ({exists Ca_d10}) return end create Ca_concen Ca_d10 // params for Ca pool in dendrite setfield Ca_d10 \ tau { 1.0 / 50 } \ Ca_base 0 addfield Ca_d10 addmsg1 setfield Ca_d10 \ addmsg1 "../CaH10 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ //=============================================================================== // Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)2005/03 //=============================================================================== /* The expression for the conductance of the potassium C-current channel has a typical voltage and time dependent activation gate, where the time dependence arises from the solution of a differential equation containing the rate parameters alpha and beta. It is multiplied by a function of calcium concentration that is given explicitly rather than being obtained from a differential equation. Therefore, we need a way to multiply the activation by a concentration dependent value which is determined from a lookup table. This is accomplished by using the Z gate with the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. */ function make_KCs10 if ({exists KCs10}) return end create tabchannel KCs10 setfield KCs10 \ Ek {EKB5FS} \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCs10 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KCs10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha v = v * 1000 // v to units of equation if (v < -10 ) alpha = 2 * {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // v to units of equation alpha = alpha * 0.001 // alpha to units of equation if (v < -10 ) beta = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // reset alpha // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KCs10 X_A->table[{i}] {alpha} setfield KCs10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCs10 X_A->calc_mode 1 X_B->calc_mode 1 // concentration dependent term (voltage independent) float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCs10 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) ca_conc = ca_conc * 0.000001 // ica_conc to units of equation if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end ca_conc = ca_conc * 1000000 //reset ca_conc setfield KCs10 Z_A->table[{i}] {0} setfield KCs10 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCs10 Z addfield KCs10 addmsg1 setfield KCs10 addmsg1 "../Ca_s10 . CONCEN Ca" end function make_KCd10 if ({exists KCd10}) return end create tabchannel KCd10 setfield KCd10 \ Ek {EKB5FS} \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCd10 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KCd10 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha v = v * 1000 // V to units of equation if (v < -10 ) alpha = {4 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // correct units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // temporarily set v to units of equation... alpha = alpha * 0.001 // alpha to units of equation if (v < -10 ) beta = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KCd10 X_A->table[{i}] {alpha} setfield KCd10 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCd10 X_A->calc_mode 1 X_B->calc_mode 1 // concentration dependent term (voltage independent) float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCd10 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end ca_conc = ca_conc * 1000000 //reset ca_conc setfield KCd10 Z_A->table[{i}] {0} setfield KCd10 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCd10 Z addfield KCd10 addmsg1 setfield KCd10 addmsg1 "../Ca_d10 . CONCEN Ca" end //======================================================================== // Tabulated Ca-dependent K AHP Channel,gK(AHP) 2003/05 //======================================================================== /* This is a tabchannel which gets the calcium concentration from Ca_hip_conc in order to calculate the activation of its Z gate. It is set up much like the Ca channel, except that the A and B tables have values which are functions of concentration, instead of voltage. */ function make_KAHPs10 if ({exists KAHPs10}) return end create tabchannel KAHPs10 setfield KAHPs10 \ Ek {EKB5FS} \ Ik 0 \ Zpower 1 setfield KAHPs10 \ Gbar 1 \ Gk 0 float tab_divs = 1041 float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPs10 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // alpha float alpha, v ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.0005 ) alpha = ca_conc/0.05 else alpha = 0.01 end ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of alpha alpha = alpha * 1000 // beta float beta ca_conc = ca_conc * 0.000001 // ca_conc to units of equation beta = 0.001 ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KAHPs10 Z_A->table[{c}] {alpha} setfield KAHPs10 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPs10 Z_conc 1 setfield KAHPs10 Z_A->calc_mode 1 Z_B->calc_mode 1 addfield KAHPs10 addmsg1 setfield KAHPs10 \ addmsg1 "../Ca_s10 . CONCEN Ca" end function make_KAHPd10 if ({exists KAHPd10}) return end create tabchannel KAHPd10 setfield KAHPd10 \ Ek {EKB5FS} \ Ik 0 \ Zpower 1 setfield KAHPd10 \ Gbar 1 \ Gk 0 float tab_divs = 1041 float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPd10 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // alpha float alpha ca_conc = ca_conc * 0.000001 //set ca_conc to units of equation if (ca_conc < 0.0005 ) alpha = ca_conc/0.05 else alpha = 0.01 end ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of alpha alpha = alpha * 1000 // beta float beta ca_conc = ca_conc * 0.000001 //set ca_conc to units of equation beta = 0.001 ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KAHPd10 Z_A->table[{c}] {alpha} setfield KAHPd10 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPd10 Z_conc 1 setfield KAHPd10 Z_A->calc_mode 1 Z_B->calc_mode 1 addfield KAHPd10 addmsg1 setfield KAHPd10 \ addmsg1 "../Ca_d10 . CONCEN Ca" end