//genesis /* FILE INFORMATION ** The 1991 Traub set of voltage and concentration dependent channels ** Implemented as tabchannels by : Dave Beeman ** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson ** Journal of Neurophysiology, Vol. 66, p. 635 (1991) ** ** This file depends on functions and constants defined in defaults.g ** As it is also intended as an example of the use of the tabchannel ** object to implement concentration dependent channels, it has extensive ** comments. Note that the original units used in the paper have been ** converted to SI (MKS) units. Also, we define the ionic equilibrium ** potentials relative to the resting potential, EREST_ACT. In the ** paper, this was defined to be zero. Here, we use -0.060 volts, the ** measured value relative to the outside of the cell. */ /* November 1999 update for GENESIS 2.2: Previous versions of this file used a combination of a table, tabgate, and vdep_channel to implement the Ca-dependent K Channel - K(C). This new version uses the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. This allows these channels to be used with the fast hsolve chanmodes > 1. */ // Now updated for Traub et al. J Neurophysiol 2003;89:909-921. // And for LTS and FS interneurons - Cunningham et al. PNAS 2004;101:7152-7157. // CONSTANTS float EREST_ACT = -0.070 /* cell resting potential */ float ENAC23FS = 0.120 + EREST_ACT // 0.050 float EKC23FS = -0.03 + EREST_ACT // -0.100 float ECAC23FS = 0.195 + EREST_ACT // 0.125 float EARC23FS = 0.030 + EREST_ACT // -0.040 float SOMA_A = 3.320e-9 // soma area in square meters /* For these channels, the maximum channel conductance (Gbar) has been calculated using the CA3 soma channel conductance densities and soma area. Typically, the functions which create these channels will be used to create a library of prototype channels. When the cell reader creates copies of these channels in various compartments, it will set the actual value of Gbar by calculating it from the cell parameter file. */ //======================================================================== // Tabchannel gNa-transient, gNa(F) 2005/03 //======================================================================== function make_NaF15 if ({exists NaF15}) return end create tabchannel NaF15 setfield NaF15 \ Ek 0.05 \ Ik 0 \ Xpower 3 \ Ypower 1 setfield NaF15 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaF15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if ({ v -2.5 } < -30 ) tau = 0.0125 + 0.1525 * { exp { {{v - 2.5} + 30} / 10} } else tau = 0.02 + 0.145 * { exp { -1 * {{v - 2.5} + 30} / 10} } end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp { { -1 * {v - 2.5} - 38} / 10}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF15 X_A->table[{i}] {alpha} setfield NaF15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF15 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call NaF15 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation... tau = 0.225 + 1.125 / { 1 + { exp {{v + 37} / 15} } } v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp {{v + 58.3} / 6.7}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF15 Y_A->table[{i}] {alpha} setfield NaF15 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF15 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03 //======================================================================== function make_NaP15 if ({exists NaP15}) return end create tabchannel NaP15 setfield NaP15 \ Ek 0.05 \ Ik 0 \ Xpower 1 setfield NaP15 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaP15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v < -40 ) tau = 0.025 + 0.14 * {exp {{ v + 40 }/10}} else tau = 0.02 + 0.145 * {exp {-1 * {v + 40}/ 10}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -10, Vhalf = -48 in physiol units // A = 1, B = -0.01, Vhalf = -0.048 inf = 1 / ( {exp {(v + 0.048) / -0.01}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaP15 X_A->table[{i}] {alpha} setfield NaP15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaP15 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel Anomalous Rectifier, gAR 2005/03 //======================================================================== function make_AR15 if ({exists AR15}) return end create tabchannel AR15 setfield AR15 \ Ek -0.04 \ Ik 0 \ Xpower 1 setfield AR15 \ Gbar 2.5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call AR15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) float tau v = v * 1000 // v to units of equation tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 5.5, Vhalf = -75, in units: Physiological Units // A = 1, B = 0.0055, Vhalf = -0.075 inf = 1 / ( {exp {(v + 0.075) / 0.0055}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield AR15 X_A->table[{i}] {alpha} setfield AR15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield AR15 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-delayed rectifier, gK(DR) 2005/03 //======================================================================== function make_KDR15 if ({exists KDR15}) return end create tabchannel KDR15 setfield KDR15 \ Ek {EKC23FS} \ Ik 0 \ Xpower 4 setfield KDR15 \ Gbar 1250 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KDR15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v <= -10 ) tau = 0.25 + 4.35 * {exp {{ v + 10 }/10}} else tau = 0.25 + 4.35 * {exp {{- v - 10}/ 10}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -11.5, Vhalf = -27, in physiological units // A = 1, B = -0.0115, Vhalf = -0.027 inf = 1 / ( {exp {(v + 0.027) / -0.0115}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KDR15 X_A->table[{i}] {alpha} setfield KDR15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KDR15 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-transient, gK(A) 2005/03 //======================================================================== function make_KA15 if ({exists KA15}) return end create tabchannel KA15 setfield KA15 \ Ek {EKC23FS} \ Ik 0 \ Xpower 4 \ Ypower 1 setfield KA15 \ Gbar 300 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KA15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -8.5, Vhalf = -60, in units: Physiological Units // A = 1, B = -0.0085, Vhalf = -0.06 inf = 1 / ( {exp {(v + 0.06) / -0.0085}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA15 X_A->table[{i}] {alpha} setfield KA15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA15 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call KA15 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -63.0 ) tau = 0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}} else tau = 9.5 end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 6, Vhalf = -78, in units: Physiological Units // A = 1, B = 0.006, Vhalf = -0.078 inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA15 Y_A->table[{i}] {alpha} setfield KA15 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA15 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK2-slow, gK2 2005/03 //======================================================================== function make_K215 if ({exists K215}) return end create tabchannel K215 setfield K215 \ Ek {EKC23FS} \ Ik 0 \ Xpower 1 \ Ypower 1 setfield K215 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call K215 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -17, Vhalf = -10, in physiological units // A = 1, B = -0.017, Vhalf = -0.01 inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K215 X_A->table[{i}] {alpha} setfield K215 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K215 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call K215 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 10.6, Vhalf = -58, in units: Physiological Units // A = 1, B = 0.0106, Vhalf = -0.058 inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1) // alpha & beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K215 Y_A->table[{i}] {alpha} setfield K215 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K215 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03 //======================================================================== function make_KM15 if ({exists KM15}) return end create tabchannel KM15 setfield KM15 \ Ek {EKC23FS} \ Ik 0 \ Xpower 1 setfield KM15 \ Gbar 75 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KM15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha // A = 0.02, B = -5, Vhalf = -20, in units: Physiological Units // A = 20, B = -0.005, Vhalf = -0.02 alpha = 20 / ( {exp {(v + 0.02) / -0.005}} + 1) // beta float beta // A = 0.01, B = -18, Vhalf = -43, in physiological units // A = 10, B = -0.018, Vhalf = -0.043 beta = 10 * {exp {(v + 0.043) / -0.018}} // alpha and beta float tau = 1/(alpha + beta) setfield KM15 X_A->table[{i}] {alpha} setfield KM15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KM15 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03 //======================================================================== function make_CaL15 if ({exists CaL15}) return end create tabchannel CaL15 setfield CaL15 \ Ek 0.125 \ Ik 0 \ Xpower 2 \ Ypower 1 setfield CaL15 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call CaL15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.204 + 0.333 / { {exp {{15.8 + v} / 18.2 }} + {exp {{- v - 131} / 16.7}} } v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -6.2, Vhalf = -56.0, in physiol units // A = 1, B = -0.0062, Vhalf = -0.056 inf = 1 / ( {exp {(v + 0.056) / -0.0062}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL15 X_A->table[{i}] {alpha} setfield CaL15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL15 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call CaL15 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v < -81.0 ) tau = 0.333 * {exp {{ v + 466 } / 66.6}} else tau = 9.32 + 0.333 * {exp {{ - v - 21 } / 10.5}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 4, Vhalf = -80, in physiol units // A = 1, B = 0.004, Vhalf = -0.08 inf = 1 / ( {exp {(v + 0.08) / 0.004}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL15 Y_A->table[{i}] {alpha} setfield CaL15 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL15 Y_A->calc_mode 1 Y_B->calc_mode 1 end //========================================================================== // Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05 //========================================================================== function make_CaH15 if ({exists CaH15}) return end create tabchannel CaH15 setfield CaH15 \ Ek 0.125 \ Ik 0 \ Xpower 2 setfield CaH15 \ Gbar 5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call CaH15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) float alpha // A = 1.6, B = -13.888889, Vhalf = 5 in physiological units // A = 1600, B = -0.013888889000000001, Vhalf = 0.005 alpha = 1600 / ( {exp {(v - 0.005) / -0.013888889000000001}} + 1) // beta float beta // A = 0.1, B = -5, Vhalf = -8.9 in physiol. units // A = 100, B = -0.005, Vhalf = -0.0089 if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6) beta = 100 * (1 + (v + 0.0089)/-0.005/2) else beta = 100 * ((v + 0.0089) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}}) end // alpha & beta float tau = 1/(alpha + beta) setfield CaH15 X_A->table[{i}] {alpha} setfield CaH15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaH15 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Ca conc, Traub et al. J Neurophysiol 2003;89:909-921. //======================================================================== /**************************************************************************** Next, we need an element to take the Calcium current calculated by the Ca channel and convert it to the Ca concentration. The "Ca_concen" object solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As it is easy to make mistakes in units when using this Calcium diffusion equation, the units used here merit some discussion. With Ca_base = 0, this corresponds to Traub's diffusion equation for concentration, except that the sign of the current term here is positive, as GENESIS uses the convention that I_Ca is the current flowing INTO the compartment through the channel. In SI units, the concentration is usually expressed in moles/m^3 (which equals millimoles/liter), and the units of B are chosen so that B = 1/(ion_charge * Faraday * volume). Current is expressed in amperes and one Faraday = 96487 coulombs. However, in this case, Traub expresses the concentration in arbitrary units, current in microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the 2003 J Neurophys paper). If we use the same concentration units, but express current in amperes and tau in seconds, our B constant is then 10^12 times the constant (called "phi") used in the paper. The actual value used will typically be determined by the cell reader from the cell parameter file (will vary inversely with surface area of compartment). However, for the prototype channel we wlll use Traub's corrected value for the soma. (An error in the paper gives it as 17,402 rather than 17.402.) In our units, this will be 17.402e12. ****************************************************************************/ function make_Ca_s15 if ({exists Ca_s15}) return end create Ca_concen Ca_s15 // params for Ca pool model setfield Ca_s15 \ tau { 1.0 / 20 } \ Ca_base 0 addfield Ca_s15 addmsg1 setfield Ca_s15 \ addmsg1 "../CaH15 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ /****************************************************************************/ function make_Ca_d15 if ({exists Ca_d15}) return end create Ca_concen Ca_d15 // params for Ca pool in dendrite setfield Ca_d15 \ tau { 1.0 / 50 } \ Ca_base 0 addfield Ca_d15 addmsg1 setfield Ca_d15 \ addmsg1 "../CaH15 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ //=============================================================================== // Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)2005/03 //=============================================================================== /* The expression for the conductance of the potassium C-current channel has a typical voltage and time dependent activation gate, where the time dependence arises from the solution of a differential equation containing the rate parameters alpha and beta. It is multiplied by a function of calcium concentration that is given explicitly rather than being obtained from a differential equation. Therefore, we need a way to multiply the activation by a concentration dependent value which is determined from a lookup table. This is accomplished by using the Z gate with the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. */ function make_KCs15 if ({exists KCs15}) return end create tabchannel KCs15 setfield KCs15 \ Ek {EKC23FS} \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCs15 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KCs15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha v = v * 1000 // v to units of equation if (v < -10 ) alpha = 2 * {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // v to units of equation alpha = alpha * 0.001 // alpha to units of equation if (v < -10 ) beta = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // reset alpha // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KCs15 X_A->table[{i}] {alpha} setfield KCs15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCs15 X_A->calc_mode 1 X_B->calc_mode 1 // concentration dependent term (voltage independent) float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCs15 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) ca_conc = ca_conc * 0.000001 // ica_conc to units of equation if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end ca_conc = ca_conc * 1000000 //reset ca_conc setfield KCs15 Z_A->table[{i}] {0} setfield KCs15 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCs15 Z addfield KCs15 addmsg1 setfield KCs15 addmsg1 "../Ca_s15 . CONCEN Ca" end function make_KCd15 if ({exists KCd15}) return end create tabchannel KCd15 setfield KCd15 \ Ek {EKC23FS} \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCd15 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KCd15 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha v = v * 1000 // V to units of equation if (v < -10 ) alpha = {4 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // correct units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // temporarily set v to units of equation... alpha = alpha * 0.001 // alpha to units of equation if (v < -10 ) beta = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KCd15 X_A->table[{i}] {alpha} setfield KCd15 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCd15 X_A->calc_mode 1 X_B->calc_mode 1 // concentration dependent term (voltage independent) float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCd15 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end ca_conc = ca_conc * 1000000 //reset ca_conc setfield KCd15 Z_A->table[{i}] {0} setfield KCd15 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCd15 Z addfield KCd15 addmsg1 setfield KCd15 addmsg1 "../Ca_d15 . CONCEN Ca" end //======================================================================== // Tabulated Ca-dependent K AHP Channel,gK(AHP) 2003/05 //======================================================================== /* This is a tabchannel which gets the calcium concentration from Ca_hip_conc in order to calculate the activation of its Z gate. It is set up much like the Ca channel, except that the A and B tables have values which are functions of concentration, instead of voltage. */ function make_KAHPs15 if ({exists KAHPs15}) return end create tabchannel KAHPs15 setfield KAHPs15 \ Ek {EKC23FS} \ Ik 0 \ Zpower 1 setfield KAHPs15 \ Gbar 1 \ Gk 0 float tab_divs = 1041 float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPs15 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // alpha float alpha, v ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.0005 ) alpha = ca_conc/0.05 else alpha = 0.01 end ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of alpha alpha = alpha * 1000 // beta float beta ca_conc = ca_conc * 0.000001 // ca_conc to units of equation beta = 0.001 ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KAHPs15 Z_A->table[{c}] {alpha} setfield KAHPs15 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPs15 Z_conc 1 setfield KAHPs15 Z_A->calc_mode 1 Z_B->calc_mode 1 addfield KAHPs15 addmsg1 setfield KAHPs15 \ addmsg1 "../Ca_s15 . CONCEN Ca" end function make_KAHPd15 if ({exists KAHPd15}) return end create tabchannel KAHPd15 setfield KAHPd15 \ Ek {EKC23FS} \ Ik 0 \ Zpower 1 setfield KAHPd15 \ Gbar 1 \ Gk 0 float tab_divs = 1041 float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPd15 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // alpha float alpha ca_conc = ca_conc * 0.000001 //set ca_conc to units of equation if (ca_conc < 0.0005 ) alpha = ca_conc/0.05 else alpha = 0.01 end ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of alpha alpha = alpha * 1000 // beta float beta ca_conc = ca_conc * 0.000001 //set ca_conc to units of equation beta = 0.001 ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KAHPd15 Z_A->table[{c}] {alpha} setfield KAHPd15 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPd15 Z_conc 1 setfield KAHPd15 Z_A->calc_mode 1 Z_B->calc_mode 1 addfield KAHPd15 addmsg1 setfield KAHPd15 \ addmsg1 "../Ca_d15 . CONCEN Ca" end