//genesis /* FILE INFORMATION ** The 1991 Traub set of voltage and concentration dependent channels ** Implemented as tabchannels by : Dave Beeman ** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson ** Journal of Neurophysiology, Vol. 66, p. 635 (1991) ** ** This file depends on functions and constants defined in defaults.g ** As it is also intended as an example of the use of the tabchannel ** object to implement concentration dependent channels, it has extensive ** comments. Note that the original units used in the paper have been ** converted to SI (MKS) units. Also, we define the ionic equilibrium ** potentials relative to the resting potential, EREST_ACT. In the ** paper, this was defined to be zero. Here, we use -0.060 volts, the ** measured value relative to the outside of the cell. */ /* November 1999 update for GENESIS 2.2: Previous versions of this file used a combination of a table, tabgate, and vdep_channel to implement the Ca-dependent K Channel - K(C). This new version uses the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. This allows these channels to be used with the fast hsolve chanmodes > 1. */ // Now updated for Traub et al. J Neurophysiol 2003;89:909-921. // And for LTS and FS interneurons - Cunningham et al. PNAS 2004;101:7152-7157. // CONSTANTS float EREST_ACT = -0.070 /* cell resting potential */ float ENAI23LTS = 0.110 + EREST_ACT // 0.050 float EKI23LTS = -0.040 + EREST_ACT // -0.100 float ECAI23LTS = 0.185 + EREST_ACT // 0.125 float EARI23LTS = 0.020 + EREST_ACT // -0.040 float SOMA_A = 3.320e-9 // soma area in square meters /* For these channels, the maximum channel conductance (Gbar) has been calculated using the CA3 soma channel conductance densities and soma area. Typically, the functions which create these channels will be used to create a library of prototype channels. When the cell reader creates copies of these channels in various compartments, it will set the actual value of Gbar by calculating it from the cell parameter file. */ //======================================================================== // Tabchannel gNa-transient, gNa(F) 2005/03 //======================================================================== function make_NaF18 if ({exists NaF18}) return end create tabchannel NaF18 setfield NaF18 \ Ek 0.05 \ Ik 0 \ Xpower 3 \ Ypower 1 setfield NaF18 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaF18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if ({ v -2.5 } < -30 ) tau = 0.0125 + 0.1525 * { exp { {{v - 2.5} + 30} / 10} } else tau = 0.02 + 0.145 * { exp { -1 * {{v - 2.5} + 30} / 10} } end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp { { -1 * {v - 2.5} - 38} / 10}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF18 X_A->table[{i}] {alpha} setfield NaF18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF18 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call NaF18 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.225 + 1.125 / { 1 + { exp {{v + 37} / 15} } } v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp {{v + 58.3} / 6.7}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF18 Y_A->table[{i}] {alpha} setfield NaF18 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF18 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03 //======================================================================== function make_NaP18 if ({exists NaP18}) return end create tabchannel NaP18 setfield NaP18 \ Ek 0.05 \ Ik 0 \ Xpower 3 setfield NaP18 \ Gbar 32 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaP18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if ({v - 2.5} < -30 ) tau = 0.025 + 0.14 * { exp { {{v - 2.5} + 30} / 10} } else tau = 0.02 + 0.145 * { exp { -1 * {{v -2.5} + 30} / 10 } } end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp { { -1 * {v - 2.5} - 38} / 10}} } v = v * 0.001 // reset v // alpha and beata float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaP18 X_A->table[{i}] {alpha} setfield NaP18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaP18 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel Anomalous Rectifier, gAR 2005/03 //======================================================================== function make_AR18 if ({exists AR18}) return end create tabchannel AR18 setfield AR18 \ Ek -0.04 \ Ik 0 \ Xpower 1 setfield AR18 \ Gbar 2.5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call AR18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) float tau v = v * 1000 // v to units of equation tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 5.5, Vhalf = -75 in physiological units // A = 1, B = 0.0055, Vhalf = -0.075 inf = 1 / ( {exp {(v + 0.075) / 0.0055}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield AR18 X_A->table[{i}] {alpha} setfield AR18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield AR18 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-delayed rectifier, gK(DR) 2005/03 //======================================================================== function make_KDR18 if ({exists KDR18}) return end create tabchannel KDR18 setfield KDR18 \ Ek -0.1 \ Ik 0 \ Xpower 4 setfield KDR18 \ Gbar 1250 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KDR18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v <= -10 ) tau = 0.25 + 4.35 * {exp {{ v + 10 }/10}} else tau = 0.25 + 4.35 * {exp {{- v - 10}/ 10}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -11.5, Vhalf = -27, in physiological units // A = 1, B = -0.0115, Vhalf = -0.027 inf = 1 / ( {exp {(v + 0.027) / -0.0115}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KDR18 X_A->table[{i}] {alpha} setfield KDR18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KDR18 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-transient, gK(A) 2005/03 //======================================================================== function make_KA18 if ({exists KA18}) return end create tabchannel KA18 setfield KA18 \ Ek -0.1 \ Ik 0 \ Xpower 4 \ Ypower 1 setfield KA18 \ Gbar 300 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KA18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -8.5, Vhalf = -60 in physiological units // A = 1, B = -0.0085, Vhalf = -0.06 inf = 1 / ( {exp {(v + 0.06) / -0.0085}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA18 X_A->table[{i}] {alpha} setfield KA18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA18 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call KA18 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v < -63.0 ) tau = 0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}} else tau = 9.5 end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 6, Vhalf = -78 in physiological units // A = 1, B = 0.006, Vhalf = -0.078 inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA18 Y_A->table[{i}] {alpha} setfield KA18 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA18 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK2-slow, gK2 2005/03 //======================================================================== function make_K218 if ({exists K218}) return end create tabchannel K218 setfield K218 \ Ek -0.1 \ Ik 0 \ Xpower 1 \ Ypower 1 setfield K218 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call K218 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -17, Vhalf = -10, in physiological units // A = 1, B = -0.017, Vhalf = -0.01 inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K218 X_A->table[{i}] {alpha} setfield K218 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K218 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call K218 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 10.6, Vhalf = -58 in physiological units // A = 1, B = 0.0106, Vhalf = -0.058 inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1) // alpha & beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K218 Y_A->table[{i}] {alpha} setfield K218 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K218 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03 //======================================================================== function make_KM18 if ({exists KM18}) return end create tabchannel KM18 setfield KM18 \ Ek -0.1 \ Ik 0 \ Xpower 1 setfield KM18 \ Gbar 75 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KM18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha // A = 0.02, B = -5, Vhalf = -20 in physiological units // A = 20, B = -0.005, Vhalf = -0.02 alpha = 20 / ( {exp {(v + 0.02) / -0.005}} + 1) // beta float beta // A = 0.01, B = -18, Vhalf = -43, in physiological units // A = 10, B = -0.018, Vhalf = -0.043 beta = 10 * {exp {(v + 0.043) / -0.018}} // alpha and beta float tau = 1/(alpha + beta) setfield KM18 X_A->table[{i}] {alpha} setfield KM18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KM18 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03 //======================================================================== function make_CaL18 if ({exists CaL18}) return end create tabchannel CaL18 setfield CaL18 \ Ek 0.125 \ Ik 0 \ Xpower 2 \ Ypower 1 setfield CaL18 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call CaL18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 1 + 0.33 / { {exp {{v + 27} / 10 }} + {exp {{- v - 102} / 15}} } v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -7.4, Vhalf = -52 in physiological units // A = 1, B = -0.0074, Vhalf = -0.052 inf = 1 / ( {exp {(v + 0.052) / -0.0074}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL18 X_A->table[{i}] {alpha} setfield CaL18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL18 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call CaL18 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 28.3 + 0.33 / {{exp {{ v + 48}/ 4}} + {exp { { -v - 407} / 50 }} } v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 5, Vhalf = -80 in physiological units // A = 1, B = 0.005, Vhalf = -0.08 inf = 1 / ( {exp {(v + 0.08) / 0.005}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL18 Y_A->table[{i}] {alpha} setfield CaL18 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL18 Y_A->calc_mode 1 Y_B->calc_mode 1 end //========================================================================== // Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05 //========================================================================== function make_CaH18 if ({exists CaH18}) return end create tabchannel CaH18 setfield CaH18 \ Ek 0.125 \ Ik 0 \ Xpower 2 setfield CaH18 \ Gbar 5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call CaH18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) float alpha // A = 1.6, B = -13.888889, Vhalf = 5 in physiological units // A = 1600, B = -0.013888889000000001, Vhalf = 0.005 alpha = 1600 / ( {exp {(v - 0.005) / -0.013888889000000001}} + 1) // beta float beta // A = 0.1, B = -5, Vhalf = -8.9 in physiol. units // A = 100, B = -0.005, Vhalf = -0.0089 if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6) beta = 100 * (1 + (v + 0.0089)/-0.005/2) else beta = 100 * ((v + 0.0089) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}}) end // alpha & beta float tau = 1/(alpha + beta) setfield CaH18 X_A->table[{i}] {alpha} setfield CaH18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaH18 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Ca conc, Traub et al. J Neurophysiol 2003;89:909-921. //======================================================================== /**************************************************************************** Next, we need an element to take the Calcium current calculated by the Ca channel and convert it to the Ca concentration. The "Ca_concen" object solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As it is easy to make mistakes in units when using this Calcium diffusion equation, the units used here merit some discussion. With Ca_base = 0, this corresponds to Traub's diffusion equation for concentration, except that the sign of the current term here is positive, as GENESIS uses the convention that I_Ca is the current flowing INTO the compartment through the channel. In SI units, the concentration is usually expressed in moles/m^3 (which equals millimoles/liter), and the units of B are chosen so that B = 1/(ion_charge * Faraday * volume). Current is expressed in amperes and one Faraday = 96487 coulombs. However, in this case, Traub expresses the concentration in arbitrary units, current in microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the 2003 J Neurophys paper). If we use the same concentration units, but express current in amperes and tau in seconds, our B constant is then 10^12 times the constant (called "phi") used in the paper. The actual value used will typically be determined by the cell reader from the cell parameter file (will vary inversely with surface area of compartment). However, for the prototype channel we wlll use Traub's corrected value for the soma. (An error in the paper gives it as 17,402 rather than 17.402.) In our units, this will be 17.402e12. ****************************************************************************/ function make_Ca_s18 if ({exists Ca_s18}) return end create Ca_concen Ca_s18 // params for Ca pool model setfield Ca_s18 \ tau { 1.0 / 20 } \ Ca_base 0 addfield Ca_s18 addmsg1 setfield Ca_s18 \ addmsg1 "../CaH18 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ /****************************************************************************/ function make_Ca_d18 if ({exists Ca_d18}) return end create Ca_concen Ca_d18 // params for Ca pool in dendrite setfield Ca_d18 \ tau { 1.0 / 50 } \ Ca_base 0 addfield Ca_d18 addmsg1 setfield Ca_d18 \ addmsg1 "../CaH18 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ //=============================================================================== // Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)2005/03 //=============================================================================== /* The expression for the conductance of the potassium C-current channel has a typical voltage and time dependent activation gate, where the time dependence arises from the solution of a differential equation containing the rate parameters alpha and beta. It is multiplied by a function of calcium concentration that is given explicitly rather than being obtained from a differential equation. Therefore, we need a way to multiply the activation by a concentration dependent value which is determined from a lookup table. This is accomplished by using the Z gate with the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. */ function make_KCs18 if ({exists KCs18}) return end create tabchannel KCs18 setfield KCs18 \ Ek -0.1 \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCs18 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KCs18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha v = v * 1000 // v to units of equation if (v < -10 ) alpha = 2 * {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // v to units of equation alpha = alpha * 0.001 // alpha to units of equation if (v < -10 ) beta = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // reset alpha // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KCs18 X_A->table[{i}] {alpha} setfield KCs18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCs18 X_A->calc_mode 1 X_B->calc_mode 1 // concentration dependent term (voltage independent) float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCs18 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) ca_conc = ca_conc * 0.000001 // ica_conc to units of equation if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end ca_conc = ca_conc * 1000000 //reset ca_conc setfield KCs18 Z_A->table[{i}] {0} setfield KCs18 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCs18 Z addfield KCs18 addmsg1 setfield KCs18 addmsg1 "../Ca_s18 . CONCEN Ca" end function make_KCd18 if ({exists KCd18}) return end create tabchannel KCd18 setfield KCd18 \ Ek -0.1 \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCd18 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KCd18 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha v = v * 1000 // v to units of equation if (v < -10 ) alpha = {4 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // correct units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // v to units of equation alpha = alpha * 0.001 // alpha to units of equation if (v < -10 ) beta = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KCd18 X_A->table[{i}] {alpha} setfield KCd18 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCd18 X_A->calc_mode 1 X_B->calc_mode 1 // concentration dependent term (voltage independent) float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCd18 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end ca_conc = ca_conc * 1000000 //reset ca_conc setfield KCd18 Z_A->table[{i}] {0} setfield KCd18 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCd18 Z addfield KCd18 addmsg1 setfield KCd18 addmsg1 "../Ca_d18 . CONCEN Ca" end //======================================================================== // Tabulated Ca-dependent K AHP Channel,gK(AHP) 2003/05 //======================================================================== /* This is a tabchannel which gets the calcium concentration from Ca_hip_conc in order to calculate the activation of its Z gate. It is set up much like the Ca channel, except that the A and B tables have values which are functions of concentration, instead of voltage. */ function make_KAHPs18 if ({exists KAHPs18}) return end create tabchannel KAHPs18 setfield KAHPs18 \ Ek -0.1 \ Ik 0 \ Zpower 1 setfield KAHPs18 \ Gbar 1 \ Gk 0 float tab_divs = 1041 float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPs18 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // alpha float alpha, v ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.0005 ) alpha = ca_conc/0.05 else alpha = 0.01 end ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of alpha alpha = alpha * 1000 // beta float beta ca_conc = ca_conc * 0.000001 // ca_conc to units of equation beta = 0.001 ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KAHPs18 Z_A->table[{c}] {alpha} setfield KAHPs18 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPs18 Z_conc 1 setfield KAHPs18 Z_A->calc_mode 1 Z_B->calc_mode 1 addfield KAHPs18 addmsg1 setfield KAHPs18 \ addmsg1 "../Ca_s18 . CONCEN Ca" end function make_KAHPd18 if ({exists KAHPd18}) return end create tabchannel KAHPd18 setfield KAHPd18 \ Ek -0.1 \ Ik 0 \ Zpower 1 setfield KAHPd18 \ Gbar 1 \ Gk 0 float tab_divs = 1041 float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPd18 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // alpha float alpha ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.0005 ) alpha = ca_conc/0.05 else alpha = 0.01 end ca_conc = ca_conc * 1000000 // reset ca_conc // correct units of alpha alpha = alpha * 1000 // beta float beta ca_conc = ca_conc * 0.000001 //set ca_conc to units of equation beta = 0.001 ca_conc = ca_conc * 1000000 // reset ca_conc // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KAHPd18 Z_A->table[{c}] {alpha} setfield KAHPd18 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPd18 Z_conc 1 setfield KAHPd18 Z_A->calc_mode 1 Z_B->calc_mode 1 addfield KAHPd18 addmsg1 setfield KAHPd18 \ addmsg1 "../Ca_d18 . CONCEN Ca" end