//genesis

/* FILE INFORMATION
** The 1991 Traub set of voltage and concentration dependent channels
** Implemented as tabchannels by : Dave Beeman
**      R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson
**	Journal of Neurophysiology, Vol. 66, p. 635 (1991)
**
** This file depends on functions and constants defined in defaults.g
** As it is also intended as an example of the use of the tabchannel
** object to implement concentration dependent channels, it has extensive
** comments.  Note that the original units used in the paper have been
** converted to SI (MKS) units.  Also, we define the ionic equilibrium 
** potentials relative to the resting potential, EREST_ACT.  In the
** paper, this was defined to be zero.  Here, we use -0.060 volts, the
** measured value relative to the outside of the cell.
*/

/* November 1999 update for GENESIS 2.2: Previous versions of this file used
   a combination of a table, tabgate, and vdep_channel to implement the
   Ca-dependent K Channel - K(C).  This new version uses the new tabchannel
   "instant" field, introduced in GENESIS 2.2, to implement an
   "instantaneous" gate for the multiplicative Ca-dependent factor in the
   conductance.   This allows these channels to be used with the fast
   hsolve chanmodes > 1.
*/

// Now updated for Traub et al. J Neurophysiol 2003;89:909-921.

// CONSTANTS
float EREST_ACT = -0.060 /* hippocampal cell resting potl */
float ENAP23RSc = 0.115 + EREST_ACT // 0.055
float EKP23RSc = -0.015 + EREST_ACT // -0.075
float ECAP23RSc = 0.140 + EREST_ACT // 0.080
float EARP23RSc = 0.025 + EREST_ACT // -0.035
float SOMA_A = 3.320e-9       // soma area in square meters

/*
For these channels, the maximum channel conductance (Gbar) has been
calculated using the CA3 soma channel conductance densities and soma
area.  Typically, the functions which create these channels will be used
to create a library of prototype channels.  When the cell reader creates
copies of these channels in various compartments, it will set the actual
value of Gbar by calculating it from the cell parameter file.
*/

//========================================================================
//                Tabchannel gNa-transient, gNa(F) 2005/03
//========================================================================
function make_NaF3
        str chanpath = "NaF3"
        if ({exists NaF3})
            return
        end
        create tabchannel NaF3
        setfield NaF3 \ 
            Ek              0.05 \
            Ik              0  \
            Xpower          3 \
            Ypower          1
        setfield NaF3 \
            Gbar 1875 \
            Gk              0 
        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i

        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call NaF3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            //  tau
            float tau
            v = v * 1000 // v to units of equation
            if (v  < -26.5 )
                tau =  0.025 + 0.14 * { exp { {v  + 26.5} / 10} } 
            else
                tau =  0.02 + 0.145 * { exp { -1 * {v + 26.5} / 10.0} }
            end
            v = v * 0.001 // reset v
            
            // Set correct units of tau
            tau = tau * 0.001

            //  inf
            float inf
            v = v * 1000 // v to units of equation
            inf =  1 / { 1 + {exp { -1*{v + 34.5} / 10}} } 
            v = v * 0.001 // reset v
            

            // alpha and beta
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            
            setfield NaF3 X_A->table[{i}] {alpha}
            setfield NaF3 X_B->table[{i}] {alpha + beta}
            v = v + dv

        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield NaF3 X_A->calc_mode 1 X_B->calc_mode 1
                    
        // Y table for gate h
        float dv = ({v_max} - {v_min})/{tab_divs}
        call NaF3 TABCREATE Y {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            // tau
            float tau
            v = v * 1000 // v to units of equation
            tau = 0.15 + 1.15 / { 1 + { exp {{v + 37} / 15} } }
            v = v * 0.001 // reset v
            // Set correct units of tau
            tau = tau * 0.001

            // inf
            float inf
            v = v * 1000 // v to units of equation
            inf = 1 / { 1 + {exp { {v + 62.9} / 10.7}} }
            v = v * 0.001 // reset v
            
            //  alpha and beta
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            
            setfield NaF3 Y_A->table[{i}] {alpha}
            setfield NaF3 Y_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield NaF3 Y_A->calc_mode 1 Y_B->calc_mode 1
end

//========================================================================
// P23RS   Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03
//========================================================================
function make_NaP3
        str chanpath = "NaP3"
        if ({exists NaP3})
            return
        end
        create tabchannel NaP3
        setfield NaP3 \ 
            Ek              0.05 \
            Ik              0  \
            Xpower          1
        setfield NaP3 \
            Gbar 1 \
            Gk              0 
        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i
            
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call NaP3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            //  tau
            float tau
            v = v * 1000 // v to units of equation
            if (v < -40 )
                tau =  0.025 + 0.14 * {exp {{ v + 40 }/10}} 
            else
                tau =  0.02 + 0.145 * {exp {-1 * {v + 40}/ 10}}
            end
            v = v * 0.001 // reset v
            // correct units of tau
            tau = tau * 0.001

            // inf
            float inf
            // A = 1, B = -10, Vhalf = -48, in units: Physiological Units
            // A = 1, B = -0.01, Vhalf = -0.048
            inf = 1 / ( {exp {(v + 0.048) / -0.01}} + 1)

            // alpha and beat
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            setfield NaP3 X_A->table[{i}] {alpha}
            setfield NaP3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield NaP3 X_A->calc_mode 1 X_B->calc_mode 1
end

//========================================================================
//   P23RS    Tabchannel Anomalous Rectifier, gAR 2005/03
//========================================================================
function make_AR3
        if ({exists AR3})
            return
        end
        create tabchannel AR3
        setfield AR3 \ 
            Ek              -0.035 \
            Ik              0  \
            Xpower          1
        
        setfield AR3 \
            Gbar 2.5 \
            Gk              0 
        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i
            
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call AR3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            // tau
            float tau
            v = v * 1000 // v to units of equation
            tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}}
            v = v * 0.001 // reset v
            
            // correct units of tau
            tau = tau * 0.001

            // inf
            float inf
                
            // A = 1, B = 5.5, Vhalf = -75, in units: Physiological Units
            // A = 1, B = 0.0055, Vhalf = -0.075
            inf = 1 / ( {exp {(v + 0.075) / 0.0055}} + 1)
        
            //  alpha and beta 
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            
            setfield AR3 X_A->table[{i}] {alpha}
            setfield AR3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield AR3 X_A->calc_mode 1 X_B->calc_mode 1
end

//========================================================================
//  P23RS    Tabchannel gK-delayed rectifier, gK(DR) 2005/03
//========================================================================
function make_KDR3
        if ({exists KDR3})
            return
        end
        create tabchannel KDR3
        setfield KDR3 \ 
            Ek              -0.095 \
            Ik              0  \
            Xpower          4
        
        setfield KDR3 \
            Gbar 1250 \
            Gk              0 
        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i
            
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call KDR3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)

            // tau
            float tau
            v = v * 1000 // v to units of equation
            if (v < -10 )
                tau =  0.25 + 4.35 * {exp {{ v + 10 }/10}} 
            else
                tau =  0.25 + 4.35 * {exp {{- v - 10}/ 10}}
            end
            v = v * 0.001 // reset v
            tau = tau * 0.001 // correct units of tau

            //  inf
            float inf
            // A = 1, B = -10, Vhalf = -29.5, in units: Physiological Units
            // A = 1, B = -0.01, Vhalf = -0.0295
            inf = 1 / ( {exp {(v + 0.0295) / -0.01}} + 1)

            
            // alpha and beta 
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            setfield KDR3 X_A->table[{i}] {alpha}
            setfield KDR3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield KDR3 X_A->calc_mode 1 X_B->calc_mode 1
end

//========================================================================
//   P23RS       Tabchannel gK-transient, gK(A) 2005/03
//========================================================================
function make_KA3
        if ({exists KA3})
            return
        end
        create tabchannel KA3
        setfield KA3 \ 
            Ek              -0.095 \
            Ik              0  \
            Xpower          4 \
            Ypower          1
        setfield KA3 \
            Gbar 300 \
            Gk              0 
        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i
            
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call KA3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            // tau
            float tau
            v = v * 1000 // v to units of equation
            tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}}
            v = v * 0.001 // reset v
            // correct units of tau
            tau = tau * 0.001

            // inf
            float inf
                
            float A, B, Vhalf
                             

            // ChannelML form of equation: inf which is of form sigmoid, with params:
            // A = 1, B = -8.5, Vhalf = -60, in units: Physiological Units
            // A = 1, B = -0.0085, Vhalf = -0.06
            inf = 1 / ( {exp {(v + 0.06) /-0.0085}} + 1)
        
            // alpha and beta 
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            
            setfield KA3 X_A->table[{i}] {alpha}
            setfield KA3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
        setfield KA3 X_A->calc_mode 1 X_B->calc_mode 1
                    
        // Y table for gate h
        float dv = ({v_max} - {v_min})/{tab_divs}
        call KA3 TABCREATE Y {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            // tau
            float tau
            v = v * 1000 // v to units of equation
            if (v < -63.0 )
                tau =  0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}} 
            else
                tau =  9.5
            end
            v = v * 0.001 // reset v
            // correct units of tau
            tau = tau * 0.001

            // inf
            float inf
                
            // A = 1, B = 6, Vhalf = -78, in units: Physiological Units
            // A = 1, B = 0.006, Vhalf = -0.078
            inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1)
        
            // alpha and beta
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            setfield KA3 Y_A->table[{i}] {alpha}
            setfield KA3 Y_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield KA3 Y_A->calc_mode 1 Y_B->calc_mode 1
end

//========================================================================
// P23RS          Tabchannel gK2-slow, gK2 2005/03
//========================================================================
function make_K23
        if ({exists K23})
            return
        end
        create tabchannel K23
        setfield K23 \ 
            Ek              -0.095 \
            Ik              0  \
            Xpower          1 \
            Ypower          1
        
        setfield K23 \
            Gbar 1 \
            Gk              0 
        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i
            
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call K23 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            // tau
            float tau
            v = v * 1000 //  v to units of equat.
            tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}}
            v = v * 0.001 // reset v
            //  correct units of tau
            tau = tau * 0.001

            //  inf
            float inf
            // A = 1, B = -17, Vhalf = -10, in units: Physiological Units
            // A = 1, B = -0.017, Vhalf = -0.01
            inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1)

            // alpha and beta 
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            setfield K23 X_A->table[{i}] {alpha}
            setfield K23 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield K23 X_A->calc_mode 1 X_B->calc_mode 1
                    
        // Y table for gate h
        float dv = ({v_max} - {v_min})/{tab_divs}
        call K23 TABCREATE Y {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            //  tau
            float tau
            v = v * 1000 // v to units of equation
            tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}}
            v = v * 0.001 // reset v
            // correct units of tau
            tau = tau * 0.001

            // inf
            float inf
            // A = 1, B = 10.6, Vhalf = -58, in units: Physiological Units
            // A = 1, B = 0.0106, half = -0.058
            inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1)

            // alpha and beta
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            setfield K23 Y_A->table[{i}] {alpha}
            setfield K23 Y_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield K23 Y_A->calc_mode 1 Y_B->calc_mode 1
end

//========================================================================
// P23RS    Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03
//========================================================================
function make_KM3
        if ({exists KM3})
            return
        end
        create tabchannel KM3
        setfield KM3 \ 
            Ek              -0.095 \
            Ik              0  \
            Xpower          1
        setfield KM3 \
            Gbar 75 \
            Gk              0 
        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call KM3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)

            // alpha
            float alpha
            // A = 0.02, B = -5, Vhalf = -20, in units: Physiological Units
            // A = 20, B = -0.005, Vhalf = -0.02
            alpha = 20 / ( {exp {(v + 0.02) / -0.005}} + 1)
        
            // beta
            float beta
            // A = 0.01, B = -18, Vhalf = -43, in units: Physiological Units
            // A = 10, B = -0.018, Vhalf = -0.043
            beta = 10 * {exp {(v + 0.043) / -0.018}}
        
            // alpha and beta 
            float tau = 1/(alpha + beta)
            setfield KM3 X_A->table[{i}] {alpha}
            setfield KM3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
        setfield KM3 X_A->calc_mode 1 X_B->calc_mode 1
end

//========================================================================
//  P23RS   Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03
//========================================================================
function make_CaL3
        if ({exists CaL3})
            return
        end
        create tabchannel CaL3
        setfield CaL3 \ 
            Ek              0.125 \
            Ik              0  \
            Xpower          2 \
            Ypower          1
        
        setfield CaL3 \
            Gbar 1 \
            Gk              0 
        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call CaL3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            //  tau
            float tau
                
            v = v * 1000 // v to units of equation
            tau = 0.204 + 0.333 / { {exp {{15.8 + v} / 18.2 }} + {exp {{- v - 131} / 16.7}} }
            v = v * 0.001 // reset v
            // correct units of tau
            tau = tau * 0.001

            // inf
            float inf
                
            float A, B, Vhalf
            // A = 1, B = -6.2, Vhalf = -56.0, in units: Physiological Units
            // A = 1, B = -0.0062, Vhalf = -0.056
            inf = 1 / ( {exp {(v + 0.056) / -0.0062}} + 1)
        
            // alpha and beta
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            setfield CaL3 X_A->table[{i}] {alpha}
            setfield CaL3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield CaL3 X_A->calc_mode 1 X_B->calc_mode 1
                    
        // Y table for gate h
        float dv = ({v_max} - {v_min})/{tab_divs}
        call CaL3 TABCREATE Y {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            // tau
            float tau
            v = v * 1000 // v to units of equation
            if (v < -81.0 )
                tau =  0.333 * {exp {{ v + 466 } / 66.6}} 
            else
                tau =  9.32 + 0.333 * {exp {{ - v - 21 } / 10.5}}
            end
            v = v * 0.001 // reset v
            // correct units of tau
            tau = tau * 0.001

            // inf
            float inf
            // A = 1, B = 4, Vhalf = -80, in units: Physiological Units
            // A = 1, B = 0.004, Vhalf = -0.08
            inf = 1 / ( {exp {(v + 0.08) / 0.004}} + 1)
        

            // alpha and beta
            float alpha
            float beta
            alpha = inf / tau   
            beta = (1- inf)/tau
            setfield CaL3 Y_A->table[{i}] {alpha}
            setfield CaL3 Y_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield CaL3 Y_A->calc_mode 1 Y_B->calc_mode 1
end

//==========================================================================
// P23RS    Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05
//==========================================================================
function make_CaH3
        if ({exists CaH3})
            return
        end
        create tabchannel CaH3
        setfield CaH3 \ 
            Ek              0.125 \
            Ik              0  \
            Xpower          2
        
        setfield CaH3 \
            Gbar 5 \
            Gk              0 

        float tab_divs = 741
        float v_min = -0.12
        float v_max = 0.06
        float v, dv, i
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call CaH3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            // alpha
            float alpha
                
            // A = 1.6, B = -13.888889, Vhalf = 5, in units: Physiological Units
            // A = 1600, B = -0.013888889000000001, Vhalf = 0.005
            alpha = 1600 / ( {exp {(v - 0.005) / -0.013888889000000001}} + 1)
        
            //  beta
            float beta
                
            // A = 0.1, B = -5, Vhalf = -8.9, in units: Physiological Units
            // A = 100, B = -0.005, Vhalf = -0.0089
            if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6)
                beta = 100 * (1 + (v + 0.0089)/-0.005/2)
            else
                beta = 100 * ((v + 0.0089) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}})
            end

            //  alpha and beta 
            float tau = 1/(alpha + beta)
            setfield CaH3 X_A->table[{i}] {alpha}
            setfield CaH3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield CaH3 X_A->calc_mode 1 X_B->calc_mode 1
end

//========================================================================
//   P23RS   Ca conc, Traub et al. J Neurophysiol 2003;89:909-921.
//========================================================================
/****************************************************************************
Next, we need an element to take the Calcium current calculated by the Ca
channel and convert it to the Ca concentration.  The "Ca_concen" object
solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C.  As
it is easy to make mistakes in units when using this Calcium diffusion
equation, the units used here merit some discussion.

With Ca_base = 0, this corresponds to Traub's diffusion equation for
concentration, except that the sign of the current term here is positive, as
GENESIS uses the convention that I_Ca is the current flowing INTO the
compartment through the channel.  In SI units, the concentration is usually
expressed in moles/m^3 (which equals millimoles/liter), and the units of B
are chosen so that B = 1/(ion_charge * Faraday * volume). Current is
expressed in amperes and one Faraday = 96487 coulombs.  However, in this
case, Traub expresses the concentration in arbitrary units, current in
microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the
2003 J Neurophys paper).  If we use the same concentration units,
but express current in amperes and tau in seconds, our B constant is then
10^12 times the constant (called "phi") used in the paper.  The actual value
used will typically be determined by the cell reader from the cell
parameter file (will vary inversely with surface area of compartment).  
However, for the prototype channel we will use Traub's
corrected value for the soma.  (An error in the paper gives it as 17,402
rather than 17.402.)  In our units, this will be 17.402e12.

****************************************************************************/
function make_Ca_s3
        if ({exists Ca_s3})
            return
        end
        create Ca_concen Ca_s3
        // params for soma Ca pool 
        setfield Ca_s3 \
            tau                   { 1.0 / 10 }    \
            Ca_base               0
        addfield Ca_s3 addmsg1
        setfield Ca_s3 \
                addmsg1        "../CaH3 . I_Ca Ik"
//        addfield Ca_s3 addmsg2
//        setfield Ca_s3 \
//                addmsg2        "../CaL3 . I_Ca Ik"
end
/*
This Ca_concen element should receive an "I_Ca" message from the calcium
channel, accompanied by the value of the calcium channel current.  As we
will ordinarily use the cell reader to create copies of these prototype
elements in one or more compartments, we need some way to be sure that the
needed messages are established.  Although the cell reader has enough
information to create the messages which link compartments to their channels
and to other adjacent compartments, it must be provided with the information
needed to establish additional messages.  This is done by placing the
message string in a user-defined field of one of the elements which is
involved in the message.  The cell reader recognizes the added field names
"addmsg1", "addmsg2", etc. as indicating that they are to be
evaluated and used to set up messages.  The paths are relative to the
element which contains the message string in its added field.  Thus,
"../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "."
refers to the Ca_hip_conc element itself.
*/

/****************************************************************************/
function make_Ca_d3
        if ({exists Ca_d3})
            return
        end
        create Ca_concen Ca_d3
        // params for dend. Ca pool model
        setfield Ca_d3 \
            tau                   { 1.0 / 50 }    \
            Ca_base               0

        addfield Ca_d3 addmsg1
        setfield Ca_d3 \
                addmsg1        "../CaH3 . I_Ca Ik"
//        addfield Ca_d3 addmsg2
//        setfield Ca_d3 \
//                addmsg2        "../CaL3 . I_Ca Ik"
end
/*
This Ca_concen element should receive an "I_Ca" message from the calcium
channel, accompanied by the value of the calcium channel current.  As we
will ordinarily use the cell reader to create copies of these prototype
elements in one or more compartments, we need some way to be sure that the
needed messages are established.  Although the cell reader has enough
information to create the messages which link compartments to their channels
and to other adjacent compartments, it must be provided with the information
needed to establish additional messages.  This is done by placing the
message string in a user-defined field of one of the elements which is
involved in the message.  The cell reader recognizes the added field names
"addmsg1", "addmsg2", etc. as indicating that they are to be
evaluated and used to set up messages.  The paths are relative to the
element which contains the message string in its added field.  Thus,
"../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "."
refers to the Ca_hip_conc element itself.
*/

//===============================================================================
//  P23RS Ca-dependent K Channel K(C)
//===============================================================================
/*
The expression for the conductance of the potassium C-current channel has a
typical voltage and time dependent activation gate, where the time dependence
arises from the solution of a differential equation containing the rate
parameters alpha and beta.  It is multiplied by a function of calcium
concentration that is given explicitly rather than being obtained from a
differential equation.  Therefore, we need a way to multiply the activation
by a concentration dependent value which is determined from a lookup table.
This is accomplished by using the Z gate with the new tabchannel "instant"
field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for
the multiplicative Ca-dependent factor in the conductance.
*/
function make_KCs3
        if ({exists KCs3})
            return
        end
        create tabchannel KCs3
        setfield KCs3 \ 
            Ek              -0.095 \
            Ik              0  \
            Xpower          1 \
            Zpower          1
        setfield KCs3 \
            Gbar 120 \
            Gk              0 
        float tab_divs = 1041
        float v_min = -0.12
        float v_max = 0.14
        float v, dv, i
            
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call KCs3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            
            // alpha
            float alpha
            v = v * 1000 // v to units of equation
            if (v < -10 )
                alpha =  {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } 
            else
                alpha =  2 * {exp { { {-1 * v} - 53.5 } / 27 }}
            end
            v = v * 0.001 // reset v
            //  correct units of alpha
            alpha = alpha * 1000

            
            // beta
            float beta
            v = v * 1000 // v to units of equation
            alpha = alpha * 0.001 // alpha to units of equation
            if (v < -10 )
                beta =  2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha 
            else
                beta =  0.0
            end
            v = v * 0.001 // reset v
            alpha = alpha * 1000  // resetting alpha
            // correct units of beta
            beta = beta * 1000

            // alpha and beta
            float tau = 1/(alpha + beta)
            
            setfield KCs3 X_A->table[{i}] {alpha}
            setfield KCs3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield KCs3 X_A->calc_mode 1 X_B->calc_mode 1
                    
        // Ca dependent term (voltage independent)
        float conc_min = 0
        float conc_max = 1000
        float dc = ({conc_max} - {conc_min})/{tab_divs}
        float ca_conc = {conc_min}
        call KCs3 TABCREATE  Z {tab_divs} {conc_min} {conc_max}
        float const_state
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
            if (ca_conc < 0.00025 )
                const_state =  {ca_conc / 0.00025} 
            else
                const_state =  1
            end
            ca_conc = ca_conc * 1000000 //reset  ca_conc
            
            setfield KCs3 Z_A->table[{i}] {0}
            setfield KCs3 Z_B->table[{i}] {const_state}
            ca_conc= ca_conc + dc
        end
        tweaktau KCs3 Z
        
        addfield KCs3 addmsg1
        setfield KCs3 addmsg1  "../Ca_s3  . CONCEN Ca"
end


function make_KCd3
        if ({exists KCd3})
            return
        end
        create tabchannel KCd3
        setfield KCd3 \ 
            Ek              -0.095 \
            Ik              0  \
            Xpower          1 \
            Zpower          1
        setfield KCd3 \
            Gbar 120 \
            Gk              0 
        float tab_divs = 1041
        float v_min = -0.12
        float v_max = 0.14
        float v, dv, i
            
        // X table for gate m
        float dv = ({v_max} - {v_min})/{tab_divs}
        call KCd3 TABCREATE X {tab_divs} {v_min} {v_max}
        v = {v_min}
        for (i = 0; i <= ({tab_divs}); i = i + 1)

            //  alpha
            float alpha
            v = v * 1000 // v to units of equation
            if (v < -10 )
                alpha =  {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } 
            else
                alpha =  2 * {exp { { {-1 * v} - 53.5 } / 27 }}
            end
            v = v * 0.001 // reset v
            // correct units of alpha
            alpha = alpha * 1000

            // beta
            float beta
            v = v * 1000 // v to units of equation
            alpha = alpha * 0.001 // alpha to units of equation
            if (v < -10 )
                beta =  2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha 
            else
                beta =  0.0
            end
            v = v * 0.001 // reset v
            alpha = alpha * 1000  // resetting alpha
                        
            // correct units of beta
            beta = beta * 1000
            
            //alpha and beta 
            float tau = 1/(alpha + beta)
            
            setfield KCd3 X_A->table[{i}] {alpha}
            setfield KCd3 X_B->table[{i}] {alpha + beta}
            v = v + dv
        end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
            
        setfield KCd3 X_A->calc_mode 1 X_B->calc_mode 1
                    
        // Ca dependent term (voltage independent)
        float conc_min = 0
        float conc_max = 1000
        float dc = ({conc_max} - {conc_min})/{tab_divs}
        float ca_conc = {conc_min}
        call KCd3 TABCREATE  Z {tab_divs} {conc_min} {conc_max}
        float const_state
        for (i = 0; i <= ({tab_divs}); i = i + 1)
            ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
            if (ca_conc < 0.00025 )
                const_state =  {ca_conc / 0.00025} 
            else
                const_state =  1
            end
            ca_conc = ca_conc * 1000000 //reset ca_conc 
            
            setfield KCd3 Z_A->table[{i}] {0}
            setfield KCd3 Z_B->table[{i}] {const_state}
            ca_conc= ca_conc + dc
        end
        tweaktau KCd3 Z
        
        addfield KCd3 addmsg1
        setfield KCd3 addmsg1  "../Ca_d3  . CONCEN Ca"
end


//========================================================================
//              P23RS  Ca-dependent K AHP Channel,gK(AHP) 
//========================================================================

/* This is a tabchannel which gets the calcium concentration from Ca pool
   in order to calculate the activation of its Z gate.  It is set up much
   like the Ca channel, except that the A and B tables have values which are
   functions of concentration, instead of voltage.
*/


function make_KAHPs3
        if ({exists KAHPs3})
            return
        end
        create tabchannel KAHPs3
        setfield KAHPs3 \ 
            Ek              -0.095 \
            Ik              0  \
            Zpower          1
        
        setfield KAHPs3 \
            Gbar 1 \
            Gk              0 
        float tab_divs = 1041
        // Ca dependent channel 
        float c
        float conc_min = 0
        float conc_max = 1000
        float dc = ({conc_max} - {conc_min})/{tab_divs}
        float ca_conc = {conc_min}
        call KAHPs3 TABCREATE Z {tab_divs} {conc_min} {conc_max}
        for (c = 0; c <= ({tab_divs}); c = c + 1)
                    
            // alpha
            float alpha
            float v
            ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
            if (ca_conc < 0.0001 )
                alpha =  ca_conc/0.01 
            else
                alpha =  0.01
            end
            ca_conc = ca_conc * 1000000 // resetting ca_conc 
            // correct units of alpha
            alpha = alpha * 1000

            // beta
            float beta
            ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
            beta = 0.01
            ca_conc = ca_conc * 1000000 // resetting ca_conc 
            // correct units of beta
            beta = beta * 1000

            // alpha and beta 

            float tau = 1/(alpha + beta)
            setfield KAHPs3 Z_A->table[{c}] {alpha}
            setfield KAHPs3 Z_B->table[{c}] {alpha + beta}
                    ca_conc = ca_conc + dc
        end // end of for (c = 0; c <= ({tab_divs}); c = c + 1)
                
        setfield KAHPs3 Z_conc 1
        setfield KAHPs3 Z_A->calc_mode 1 Z_B->calc_mode 1

        addfield KAHPs3 addmsg1
        setfield KAHPs3  \
                addmsg1        "../Ca_s3 . CONCEN Ca"
end


function make_KAHPd3
        if ({exists KAHPd3})
            return
        end
        create tabchannel KAHPd3
        setfield KAHPd3 \ 
            Ek              -0.095 \
            Ik              0  \
            Zpower          1
        setfield KAHPd3 \
            Gbar 1 \
            Gk              0 
        float tab_divs = 1041

        float c
        float conc_min = 0
        float conc_max = 1000
        float dc = ({conc_max} - {conc_min})/{tab_divs}
        float ca_conc = {conc_min}
        call KAHPd3 TABCREATE Z {tab_divs} {conc_min} {conc_max}
        for (c = 0; c <= ({tab_divs}); c = c + 1)
                    
            // alpha
            float alpha
            ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
            if (ca_conc < 0.0001 )
                alpha =  ca_conc/0.01 
            else
                alpha =  0.01
            end
            ca_conc = ca_conc * 1000000 // reset ca_conc 
            // correct units of alpha
            alpha = alpha * 1000

            // beta
            float beta
            ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
            beta = 0.01
            ca_conc = ca_conc * 1000000 // reset ca_conc 
            // correct units of beta
            beta = beta * 1000

            // alpha and beta
            float tau = 1/(alpha + beta)
            
            setfield KAHPd3 Z_A->table[{c}] {alpha}
            setfield KAHPd3 Z_B->table[{c}] {alpha + beta}
                    ca_conc = ca_conc + dc
        end // end of for (c = 0; c <= ({tab_divs}); c = c + 1)
                
        setfield KAHPd3 Z_conc 1
        setfield KAHPd3 Z_A->calc_mode 1 Z_B->calc_mode 1

        addfield KAHPd3 addmsg1
        setfield KAHPd3  \
                addmsg1        "../Ca_d3 . CONCEN Ca"
end