//genesis /* FILE INFORMATION ** The 1991 Traub set of voltage and concentration dependent channels ** Implemented as tabchannels by : Dave Beeman ** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson ** Journal of Neurophysiology, Vol. 66, p. 635 (1991) ** ** This file depends on functions and constants defined in defaults.g ** As it is also intended as an example of the use of the tabchannel ** object to implement concentration dependent channels, it has extensive ** comments. Note that the original units used in the paper have been ** converted to SI (MKS) units. Also, we define the ionic equilibrium ** potentials relative to the resting potential, EREST_ACT. In the ** paper, this was defined to be zero. Here, we use -0.060 volts, the ** measured value relative to the outside of the cell. */ /* November 1999 update for GENESIS 2.2: Previous versions of this file used a combination of a table, tabgate, and vdep_channel to implement the Ca-dependent K Channel - K(C). This new version uses the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. This allows these channels to be used with the fast hsolve chanmodes > 1. */ // Now updated for Traub et al. J Neurophysiol 2003;89:909-921. // CONSTANTS float EREST_ACT = -0.060 /* hippocampal cell resting potl */ float ENAP6RSc = 0.115 + EREST_ACT // 0.055 float EKP6RSc = -0.015 + EREST_ACT // -0.075 float ECAP6RSc = 0.140 + EREST_ACT // 0.080 float EARP6RSc = 0.025 + EREST_ACT // -0.035 float SOMA_A = 3.320e-9 // soma area in square meters /* For these channels, the maximum channel conductance (Gbar) has been calculated using the CA3 soma channel conductance densities and soma area. Typically, the functions which create these channels will be used to create a library of prototype channels. When the cell reader creates copies of these channels in various compartments, it will set the actual value of Gbar by calculating it from the cell parameter file. */ //======================================================================== // Tabchannel gNa-transient, gNa(F) 2005/03 //======================================================================== function make_NaF13 str chanpath = "NaF13" if ({exists NaF13}) return end create tabchannel NaF13 setfield NaF13 \ Ek 0.05 \ Ik 0 \ Xpower 3 \ Ypower 1 setfield NaF13 \ Gbar 1875 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaF13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if ({v - 3.5} < -30 ) tau = 0.025 + 0.14 * { exp { {{v - 3.5} + 30} / 10} } else tau = 0.02 + 0.145 * { exp { -1 * {{v - 3.5} + 30} / 10 } } end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // temporarily set v to units of equation... inf = 1 / { 1 + {exp { { -1 * {v - 3.5} - 38} / 10}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF13 X_A->table[{i}] {alpha} setfield NaF13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF13 X_A->calc_mode 1 X_B->calc_mode 1 // Creating table for gate h, using name Y for it here float dv = ({v_max} - {v_min})/{tab_divs} call NaF13 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 0.15 + 1.15 / { 1 + { exp {{ v + 37 } / 15} } } v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // temporarily set v to units of equation... inf = 1 / { 1 + {exp {{ v + 62.9 } / 10.7}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF13 Y_A->table[{i}] {alpha} setfield NaF13 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF13 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03 //======================================================================== function make_NaP13 str chanpath = "NaP13" if ({exists NaP13}) return end create tabchannel NaP13 setfield NaP13 \ Ek 0.05 \ Ik 0 \ Xpower 1 setfield NaP13 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaP13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -40 ) tau = 0.025 + 0.14 * {exp {{ v + 40 }/10}} else tau = 0.02 + 0.145 * {exp {-1 * {v + 40}/ 10}} end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -10, Vhalf = -48 in physiological units inf = 1 / ( {exp {(v + 0.048) / -0.01}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaP13 X_A->table[{i}] {alpha} setfield NaP13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaP13 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel Anomalous Rectifier, gAR 2005/03 //======================================================================== function make_AR13 str chanpath = "AR13" if ({exists {chanpath}}) return end create tabchannel {chanpath} setfield {chanpath} \ Ek -0.035 \ Ik 0 \ Xpower 1 setfield {chanpath} \ Gbar 2.5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call {chanpath} TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}} v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 5.5, Vhalf = -75 in physiol units inf = 1 / ( {exp {(v + 0.075 ) / 0.0055}} + 1) // alpha & beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield {chanpath} X_A->table[{i}] {alpha} setfield {chanpath} X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield {chanpath} X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-delayed rectifier, gK(DR) 2005/03 //======================================================================== function make_KDR13 str chanpath = "KDR13" if ({exists KDR13}) return end create tabchannel KDR13 setfield KDR13 \ Ek -0.095 \ Ik 0 \ Xpower 4 setfield KDR13 \ Gbar 1250 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KDR13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -10 ) tau = 0.25 + 4.35 * {exp {{ v + 10 }/10}} else tau = 0.25 + 4.35 * {exp {{- v - 10}/ 10}} end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -10, Vhalf = -29.5, in physiological units inf = 1 / ( {exp {(v + 0.0295) / -0.01}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KDR13 X_A->table[{i}] {alpha} setfield KDR13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KDR13 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-transient, gK(A) 2005/03 //======================================================================== function make_KA13 str chanpath = "KA13" if ({exists KA13}) return end create tabchannel KA13 setfield KA13 \ Ek -0.095 \ Ik 0 \ Xpower 4 \ Ypower 1 setfield KA13 \ Gbar 300 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KA13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}} v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -8.5, Vhalf = -60, in units: Physiological Units inf = 1 / ( {exp {(v + 0.06) / -0.0085}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA13 X_A->table[{i}] {alpha} setfield KA13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA13 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call KA13 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -63.0 ) tau = 0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}} else tau = 9.5 end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 6, Vhalf = -78, in physiological units inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA13 Y_A->table[{i}] {alpha} setfield KA13 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA13 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK2-slow, gK2 2005/03 //======================================================================== function make_K213 str chanpath = "K213" if ({exists K213}) return end create tabchannel K213 setfield K213 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Ypower 1 setfield K213 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call K213 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}} v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // Looking at rate: inf float inf // A = 1, B = -17, Vhalf = -10, in physiological units inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K213 X_A->table[{i}] {alpha} setfield K213 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K213 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call K213 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}} v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 //inf float inf // A = 1, B = 10.6, Vhalf = -58, in units: Physiological Units inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K213 Y_A->table[{i}] {alpha} setfield K213 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K213 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03 //======================================================================== function make_KM13 str chanpath = "KM13" if ({exists KM13}) return end create tabchannel KM13 setfield KM13 \ Ek -0.095 \ Ik 0 \ Xpower 1 setfield KM13 \ Gbar 75 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call KM13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) //alpha float alpha // A = 0.02, B = -5, Vhalf = -20, in units: Physiological Units alpha = 20 / ( {exp {(v +0.02)/-0.005}} + 1) //beta float beta // A = 0.01, B = -18, Vhalf = -43, in physiological Units beta = 10 * {exp {(v +0.043) / -0.018}} // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KM13 X_A->table[{i}] {alpha} setfield KM13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KM13 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03 //======================================================================== function make_CaL13 str chanpath = "CaL13" if ({exists CaL13}) return end create tabchannel CaL13 setfield CaL13 \ Ek 0.125 \ Ik 0 \ Xpower 2 \ Ypower 1 setfield CaL13 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call CaL13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // Looking at rate: tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 0.204 + 0.333 / { {exp {{15.8 + v} / 18.2 }} + {exp {{- v - 131} / 16.7}} } v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -6.2, Vhalf = -56.0, in physiological Units inf = 1 / ( {exp {(v + 0.056) / -0.0062}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL13 X_A->table[{i}] {alpha} setfield CaL13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL13 X_A->calc_mode 1 X_B->calc_mode 1 // Creating table for gate h, using name Y for it here float dv = ({v_max} - {v_min})/{tab_divs} call CaL13 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -81.0 ) tau = 0.333 * {exp {{ v + 466 } / 66.6}} else tau = 9.32 + 0.333 * {exp {{ - v - 21 } / 10.5}} end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 //inf float inf // A = 1, B = 4, Vhalf = -80, in units: Physiological Units inf = 1 / ( {exp {(v + 0.08 ) / 0.004}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL13 Y_A->table[{i}] {alpha} setfield CaL13 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL13 Y_A->calc_mode 1 Y_B->calc_mode 1 end //========================================================================== // Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05 //========================================================================== function make_CaH13 str chanpath = "CaH13" if ({exists CaH13}) return end create tabchannel CaH13 setfield CaH13 \ Ek 0.125 \ Ik 0 \ Xpower 2 setfield CaH13 \ Gbar 5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call CaH13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha // A = 1.6, B = -13.888889, Vhalf = 5, in physiological Units alpha = 1600 / ( {exp {(v - 0.005) /-0.013888889000000001}} + 1) // beta float beta if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6) beta = 100 * (1 + (v +0.0089)/-0.005/2) else beta = 100 * ((v + 0.0089 ) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}}) end // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield CaH13 X_A->table[{i}] {alpha} setfield CaH13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaH13 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Ca conc, Traub et al. J Neurophysiol 2003;89:909-921. //======================================================================== /**************************************************************************** Next, we need an element to take the Calcium current calculated by the Ca channel and convert it to the Ca concentration. The "Ca_concen" object solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As it is easy to make mistakes in units when using this Calcium diffusion equation, the units used here merit some discussion. With Ca_base = 0, this corresponds to Traub's diffusion equation for concentration, except that the sign of the current term here is positive, as GENESIS uses the convention that I_Ca is the current flowing INTO the compartment through the channel. In SI units, the concentration is usually expressed in moles/m^3 (which equals millimoles/liter), and the units of B are chosen so that B = 1/(ion_charge * Faraday * volume). Current is expressed in amperes and one Faraday = 96487 coulombs. However, in this case, Traub expresses the concentration in arbitrary units, current in microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the 2003 J Neurophys paper). If we use the same concentration units, but express current in amperes and tau in seconds, our B constant is then 10^12 times the constant (called "phi") used in the paper. The actual value used will typically be determined by the cell reader from the cell parameter file (will vary inversely with surface area of compartment). However, for the prototype channel we will use Traub's corrected value for the soma. (An error in the paper gives it as 17,402 rather than 17.402.) In our units, this will be 17.402e12. ****************************************************************************/ function make_Ca_s13 str chanpath = "Ca_s13" if ({exists Ca_s13}) return end create Ca_concen Ca_s13 // Setting params for a decaying_pool_model setfield Ca_s13 \ tau { 1.0 / 10 } \ Ca_base 0 addfield Ca_s13 addmsg1 setfield Ca_s13 \ addmsg1 "../CaH13 . I_Ca Ik" addfield Ca_s13 addmsg2 setfield Ca_s13 \ addmsg2 "../CaL13 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ /****************************************************************************/ function make_Ca_d13 str chanpath = "Ca_d13" if ({exists Ca_d13}) return end create Ca_concen Ca_d13 // Setting params for a decaying_pool_model setfield Ca_d13 \ tau { 1.0 / 50 } \ Ca_base 0 addfield Ca_d13 addmsg1 setfield Ca_d13 \ addmsg1 "../CaH13 . I_Ca Ik" addfield Ca_d13 addmsg2 setfield Ca_d13 \ addmsg2 "../CaL13 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ //=============================================================================== // Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)2005/03 //=============================================================================== /* The expression for the conductance of the potassium C-current channel has a typical voltage and time dependent activation gate, where the time dependence arises from the solution of a differential equation containing the rate parameters alpha and beta. It is multiplied by a function of calcium concentration that is given explicitly rather than being obtained from a differential equation. Therefore, we need a way to multiply the activation by a concentration dependent value which is determined from a lookup table. This is accomplished by using the Z gate with the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. */ function make_KCs13 if ({exists KCs13}) return end create tabchannel KCs13 setfield KCs13 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCs13 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call KCs13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // Looking at rate: alpha float alpha v = v * 1000 // temporarily set v to units of equation... if (v < -10 ) alpha = {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // Set correct units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // temporarily set v to units of equation... // Equation depends on alpha, so converting it... alpha = alpha * 0.001 if (v < -10 ) beta = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // Set correct units of beta beta = beta * 1000 // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KCs13 X_A->table[{i}] {alpha} setfield KCs13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCs13 X_A->calc_mode 1 X_B->calc_mode 1 // Adding voltage independent concentration term float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCs13 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) // Equation is in different set of units... ca_conc = ca_conc * 0.000001 if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end // Converting back... ca_conc = ca_conc * 1000000 setfield KCs13 Z_A->table[{i}] {0} setfield KCs13 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCs13 Z addfield KCs13 addmsg1 setfield KCs13 addmsg1 "../Ca_s13 . CONCEN Ca" end function make_KCd13 if ({exists KCd13}) return end create tabchannel KCd13 setfield KCd13 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCd13 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call KCd13 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // Looking at rate: alpha float alpha v = v * 1000 // temporarily set v to units of equation... if (v < -10 ) alpha = {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // Set correct units of alpha alpha = alpha * 1000 // Looking at rate: beta float beta v = v * 1000 // temporarily set v to units of equation... // Equation depends on alpha, so converting it... alpha = alpha * 0.001 if (v < -10 ) beta = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // Set correct units of beta beta = beta * 1000 // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KCd13 X_A->table[{i}] {alpha} setfield KCd13 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCd13 X_A->calc_mode 1 X_B->calc_mode 1 // Adding voltage independent concentration term float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCd13 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) // Equation is in different set of units... ca_conc = ca_conc * 0.000001 if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end // Converting back... ca_conc = ca_conc * 1000000 setfield KCd13 Z_A->table[{i}] {0} setfield KCd13 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCd13 Z addfield KCd13 addmsg1 setfield KCd13 addmsg1 "../Ca_d13 . CONCEN Ca" end //======================================================================== // Tabulated Ca-dependent K AHP Channel,gK(AHP) 2003/05 //======================================================================== /* This is a tabchannel which gets the calcium concentration from Ca_hip_conc in order to calculate the activation of its Z gate. It is set up much like the Ca channel, except that the A and B tables have values which are functions of concentration, instead of voltage. */ function make_KAHPs13 if ({exists KAHPs13}) return end create tabchannel KAHPs13 setfield KAHPs13 \ Ek -0.095 \ Ik 0 \ Zpower 1 setfield KAHPs13 \ Gbar 1 \ Gk 0 float tab_divs = 1041 // Channel is dependent on concentration of: Calcium, rate equations will involve variable: ca_conc float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPs13 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // Looking at rate: alpha float alpha float v v = v * 1000 // temporarily set v to units of equation... // Equation depends on concentration, so converting that too... ca_conc = ca_conc * 0.000001 if (ca_conc < 0.0001 ) alpha = ca_conc/0.01 else alpha = 0.01 end v = v * 0.001 // reset v ca_conc = ca_conc * 1000000 // resetting ca_conc // Set correct units of alpha alpha = alpha * 1000 // Looking at rate: beta float beta v = v * 1000 // temporarily set v to units of equation... // Equation depends on concentration, so converting that too... ca_conc = ca_conc * 0.000001 beta = 0.001 v = v * 0.001 // reset v ca_conc = ca_conc * 1000000 // resetting ca_conc // Set correct units of beta beta = beta * 1000 // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KAHPs13 Z_A->table[{c}] {alpha} setfield KAHPs13 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPs13 Z_conc 1 setfield KAHPs13 Z_A->calc_mode 1 Z_B->calc_mode 1 // Use an added field to tell the cell reader to set up the // CONCEN message from the Ca_concen element addfield KAHPs13 addmsg1 setfield KAHPs13 \ addmsg1 "../Ca_s13 . CONCEN Ca" end function make_KAHPd13 if ({exists KAHPd13}) return end create tabchannel KAHPd13 setfield KAHPd13 \ Ek -0.095 \ Ik 0 \ Zpower 1 setfield KAHPd13 \ Gbar 1 \ Gk 0 float tab_divs = 1041 // Channel is dependent on concentration of: Calcium, rate equations will involve variable: ca_conc float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPd13 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // Looking at rate: alpha float alpha float v v = v * 1000 // temporarily set v to units of equation... // Equation depends on concentration, so converting that too... ca_conc = ca_conc * 0.000001 if (ca_conc < 0.0001 ) alpha = ca_conc/0.01 else alpha = 0.01 end v = v * 0.001 // reset v ca_conc = ca_conc * 1000000 // resetting ca_conc // Set correct units of alpha alpha = alpha * 1000 // Looking at rate: beta float beta v = v * 1000 // temporarily set v to units of equation... // Equation depends on concentration, so converting that too... ca_conc = ca_conc * 0.000001 beta = 0.001 v = v * 0.001 // reset v ca_conc = ca_conc * 1000000 // resetting ca_conc // Set correct units of beta beta = beta * 1000 // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KAHPd13 Z_A->table[{c}] {alpha} setfield KAHPd13 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPd13 Z_conc 1 setfield KAHPd13 Z_A->calc_mode 1 Z_B->calc_mode 1 // Use an added field to tell the cell reader to set up the // CONCEN message from the Ca_concen element addfield KAHPd13 addmsg1 setfield KAHPd13 \ addmsg1 "../Ca_d13 . CONCEN Ca" end