//genesis /* FILE INFORMATION ** The 1991 Traub set of voltage and concentration dependent channels ** Implemented as tabchannels by : Dave Beeman ** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson ** Journal of Neurophysiology, Vol. 66, p. 635 (1991) ** ** This file depends on functions and constants defined in defaults.g ** As it is also intended as an example of the use of the tabchannel ** object to implement concentration dependent channels, it has extensive ** comments. Note that the original units used in the paper have been ** converted to SI (MKS) units. Also, we define the ionic equilibrium ** potentials relative to the resting potential, EREST_ACT. In the ** paper, this was defined to be zero. Here, we use -0.060 volts, the ** measured value relative to the outside of the cell. */ /* November 1999 update for GENESIS 2.2: Previous versions of this file used a combination of a table, tabgate, and vdep_channel to implement the Ca-dependent K Channel - K(C). This new version uses the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. This allows these channels to be used with the fast hsolve chanmodes > 1. */ // Now updated for Traub et al. J Neurophysiol 2003;89:909-921. // CONSTANTS float EREST_ACT = -0.060 /* hippocampal cell resting potl */ float ENAP6RSd = 0.115 + EREST_ACT // 0.055 float EKP6RSd = -0.015 + EREST_ACT // -0.075 float ECAP6RSd = 0.140 + EREST_ACT // 0.080 float EARP6RSd = 0.025 + EREST_ACT // -0.035 float SOMA_A = 3.320e-9 // soma area in square meters /* For these channels, the maximum channel conductance (Gbar) has been calculated using the CA3 soma channel conductance densities and soma area. Typically, the functions which create these channels will be used to create a library of prototype channels. When the cell reader creates copies of these channels in various compartments, it will set the actual value of Gbar by calculating it from the cell parameter file. */ //======================================================================== // Tabchannel gNa-transient, gNa(F) 2005/03 //======================================================================== function make_NaF14 str chanpath = "NaF14" if ({exists NaF14}) return end create tabchannel NaF14 setfield NaF14 \ Ek 0.05 \ Ik 0 \ Xpower 3 \ Ypower 1 setfield NaF14 \ Gbar 1875 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaF14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if ({v - 3.5} < -30 ) tau = 0.025 + 0.14 * { exp { {{v - 3.5} + 30} / 10} } else tau = 0.02 + 0.145 * { exp { -1 * {{v - 3.5} + 30} / 10 } } end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // temporarily set v to units of equation... inf = 1 / { 1 + {exp { { -1 * {v - 3.5} - 38} / 10}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF14 X_A->table[{i}] {alpha} setfield NaF14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF14 X_A->calc_mode 1 X_B->calc_mode 1 // Creating table for gate h, using name Y for it here float dv = ({v_max} - {v_min})/{tab_divs} call NaF14 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 0.15 + 1.15 / { 1 + { exp {{ v + 37 } / 15} } } v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // temporarily set v to units of equation... inf = 1 / { 1 + {exp {{ v + 62.9 } / 10.7}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF14 Y_A->table[{i}] {alpha} setfield NaF14 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF14 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03 //======================================================================== function make_NaP14 str chanpath = "NaP14" if ({exists NaP14}) return end create tabchannel NaP14 setfield NaP14 \ Ek 0.05 \ Ik 0 \ Xpower 1 setfield NaP14 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaP14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -40 ) tau = 0.025 + 0.14 * {exp {{ v + 40 }/10}} else tau = 0.02 + 0.145 * {exp {-1 * {v + 40}/ 10}} end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -10, Vhalf = -48 in physiological units inf = 1 / ( {exp {(v + 0.048) / -0.01}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaP14 X_A->table[{i}] {alpha} setfield NaP14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaP14 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel Anomalous Rectifier, gAR 2005/03 //======================================================================== function make_AR14 str chanpath = "AR14" if ({exists {chanpath}}) return end create tabchannel {chanpath} setfield {chanpath} \ Ek -0.035 \ Ik 0 \ Xpower 1 setfield {chanpath} \ Gbar 2.5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call {chanpath} TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}} v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 5.5, Vhalf = -75 in physiol units inf = 1 / ( {exp {(v + 0.075 ) / 0.0055}} + 1) // alpha & beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield {chanpath} X_A->table[{i}] {alpha} setfield {chanpath} X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield {chanpath} X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-delayed rectifier, gK(DR) 2005/03 //======================================================================== function make_KDR14 str chanpath = "KDR14" if ({exists KDR14}) return end create tabchannel KDR14 setfield KDR14 \ Ek -0.095 \ Ik 0 \ Xpower 4 setfield KDR14 \ Gbar 1250 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KDR14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -10 ) tau = 0.25 + 4.35 * {exp {{ v + 10 }/10}} else tau = 0.25 + 4.35 * {exp {{- v - 10}/ 10}} end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -10, Vhalf = -29.5, in physiological units inf = 1 / ( {exp {(v + 0.0295) / -0.01}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KDR14 X_A->table[{i}] {alpha} setfield KDR14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KDR14 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-transient, gK(A) 2005/03 //======================================================================== function make_KA14 str chanpath = "KA14" if ({exists KA14}) return end create tabchannel KA14 setfield KA14 \ Ek -0.095 \ Ik 0 \ Xpower 4 \ Ypower 1 setfield KA14 \ Gbar 300 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KA14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}} v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -8.5, Vhalf = -60, in units: Physiological Units inf = 1 / ( {exp {(v + 0.06) / -0.0085}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA14 X_A->table[{i}] {alpha} setfield KA14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA14 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call KA14 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -63.0 ) tau = 0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}} else tau = 9.5 end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 6, Vhalf = -78, in physiological units inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA14 Y_A->table[{i}] {alpha} setfield KA14 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA14 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK2-slow, gK2 2005/03 //======================================================================== function make_K214 str chanpath = "K214" if ({exists K214}) return end create tabchannel K214 setfield K214 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Ypower 1 setfield K214 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call K214 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}} v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // Looking at rate: inf float inf // A = 1, B = -17, Vhalf = -10, in physiological units inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K214 X_A->table[{i}] {alpha} setfield K214 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K214 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call K214 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}} v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 //inf float inf // A = 1, B = 10.6, Vhalf = -58, in units: Physiological Units inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K214 Y_A->table[{i}] {alpha} setfield K214 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K214 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03 //======================================================================== function make_KM14 str chanpath = "KM14" if ({exists KM14}) return end create tabchannel KM14 setfield KM14 \ Ek -0.095 \ Ik 0 \ Xpower 1 setfield KM14 \ Gbar 75 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call KM14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) //alpha float alpha // A = 0.02, B = -5, Vhalf = -20, in units: Physiological Units alpha = 20 / ( {exp {(v +0.02)/-0.005}} + 1) //beta float beta // A = 0.01, B = -18, Vhalf = -43, in physiological Units beta = 10 * {exp {(v +0.043) / -0.018}} // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KM14 X_A->table[{i}] {alpha} setfield KM14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KM14 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03 //======================================================================== function make_CaL14 str chanpath = "CaL14" if ({exists CaL14}) return end create tabchannel CaL14 setfield CaL14 \ Ek 0.125 \ Ik 0 \ Xpower 2 \ Ypower 1 setfield CaL14 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call CaL14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // Looking at rate: tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 0.204 + 0.333 / { {exp {{15.8 + v} / 18.2 }} + {exp {{- v - 131} / 16.7}} } v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -6.2, Vhalf = -56.0, in physiological Units inf = 1 / ( {exp {(v + 0.056) / -0.0062}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL14 X_A->table[{i}] {alpha} setfield CaL14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL14 X_A->calc_mode 1 X_B->calc_mode 1 // Creating table for gate h, using name Y for it here float dv = ({v_max} - {v_min})/{tab_divs} call CaL14 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -81.0 ) tau = 0.333 * {exp {{ v + 466 } / 66.6}} else tau = 9.32 + 0.333 * {exp {{ - v - 21 } / 10.5}} end v = v * 0.001 // reset v // Set correct units of tau tau = tau * 0.001 //inf float inf // A = 1, B = 4, Vhalf = -80, in units: Physiological Units inf = 1 / ( {exp {(v + 0.08 ) / 0.004}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL14 Y_A->table[{i}] {alpha} setfield CaL14 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL14 Y_A->calc_mode 1 Y_B->calc_mode 1 end //========================================================================== // Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05 //========================================================================== function make_CaH14 str chanpath = "CaH14" if ({exists CaH14}) return end create tabchannel CaH14 setfield CaH14 \ Ek 0.125 \ Ik 0 \ Xpower 2 setfield CaH14 \ Gbar 5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call CaH14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha // A = 1.6, B = -13.888889, Vhalf = 5, in physiological Units alpha = 1600 / ( {exp {(v - 0.005) /-0.013888889000000001}} + 1) // beta float beta if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6) beta = 100 * (1 + (v +0.0089)/-0.005/2) else beta = 100 * ((v + 0.0089 ) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}}) end // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield CaH14 X_A->table[{i}] {alpha} setfield CaH14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaH14 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Ca conc, Traub et al. J Neurophysiol 2003;89:909-921. //======================================================================== /**************************************************************************** Next, we need an element to take the Calcium current calculated by the Ca channel and convert it to the Ca concentration. The "Ca_concen" object solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As it is easy to make mistakes in units when using this Calcium diffusion equation, the units used here merit some discussion. With Ca_base = 0, this corresponds to Traub's diffusion equation for concentration, except that the sign of the current term here is positive, as GENESIS uses the convention that I_Ca is the current flowing INTO the compartment through the channel. In SI units, the concentration is usually expressed in moles/m^3 (which equals millimoles/liter), and the units of B are chosen so that B = 1/(ion_charge * Faraday * volume). Current is expressed in amperes and one Faraday = 96487 coulombs. However, in this case, Traub expresses the concentration in arbitrary units, current in microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the 2003 J Neurophys paper). If we use the same concentration units, but express current in amperes and tau in seconds, our B constant is then 10^12 times the constant (called "phi") used in the paper. The actual value used will typically be determined by the cell reader from the cell parameter file (will vary inversely with surface area of compartment). However, for the prototype channel we will use Traub's corrected value for the soma. (An error in the paper gives it as 17,402 rather than 17.402.) In our units, this will be 17.402e12. ****************************************************************************/ function make_Ca_s14 str chanpath = "Ca_s14" if ({exists Ca_s14}) return end create Ca_concen Ca_s14 // Setting params for a decaying_pool_model setfield Ca_s14 \ tau { 1.0 / 10 } \ Ca_base 0 addfield Ca_s14 addmsg1 setfield Ca_s14 \ addmsg1 "../CaH14 . I_Ca Ik" addfield Ca_s14 addmsg2 setfield Ca_s14 \ addmsg2 "../CaL14 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ /****************************************************************************/ function make_Ca_d14 str chanpath = "Ca_d14" if ({exists Ca_d14}) return end create Ca_concen Ca_d14 // Setting params for a decaying_pool_model setfield Ca_d14 \ tau { 1.0 / 50 } \ Ca_base 0 addfield Ca_d14 addmsg1 setfield Ca_d14 \ addmsg1 "../CaH14 . I_Ca Ik" addfield Ca_d14 addmsg2 setfield Ca_d14 \ addmsg2 "../CaL14 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ //=============================================================================== // Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)2005/03 //=============================================================================== /* The expression for the conductance of the potassium C-current channel has a typical voltage and time dependent activation gate, where the time dependence arises from the solution of a differential equation containing the rate parameters alpha and beta. It is multiplied by a function of calcium concentration that is given explicitly rather than being obtained from a differential equation. Therefore, we need a way to multiply the activation by a concentration dependent value which is determined from a lookup table. This is accomplished by using the Z gate with the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. */ function make_KCs14 if ({exists KCs14}) return end create tabchannel KCs14 setfield KCs14 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCs14 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call KCs14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // Looking at rate: alpha float alpha v = v * 1000 // temporarily set v to units of equation... if (v < -10 ) alpha = {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // Set correct units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // temporarily set v to units of equation... // Equation depends on alpha, so converting it... alpha = alpha * 0.001 if (v < -10 ) beta = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // Set correct units of beta beta = beta * 1000 // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KCs14 X_A->table[{i}] {alpha} setfield KCs14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCs14 X_A->calc_mode 1 X_B->calc_mode 1 // Adding voltage independent concentration term float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCs14 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) // Equation is in different set of units... ca_conc = ca_conc * 0.000001 if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end // Converting back... ca_conc = ca_conc * 1000000 setfield KCs14 Z_A->table[{i}] {0} setfield KCs14 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCs14 Z addfield KCs14 addmsg1 setfield KCs14 addmsg1 "../Ca_s14 . CONCEN Ca" end function make_KCd14 if ({exists KCd14}) return end create tabchannel KCd14 setfield KCd14 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCd14 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // Creating table for gate m, using name X for it here float dv = ({v_max} - {v_min})/{tab_divs} call KCd14 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // Looking at rate: alpha float alpha v = v * 1000 // temporarily set v to units of equation... if (v < -10 ) alpha = {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // Set correct units of alpha alpha = alpha * 1000 // Looking at rate: beta float beta v = v * 1000 // temporarily set v to units of equation... // Equation depends on alpha, so converting it... alpha = alpha * 0.001 if (v < -10 ) beta = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // Set correct units of beta beta = beta * 1000 // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KCd14 X_A->table[{i}] {alpha} setfield KCd14 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCd14 X_A->calc_mode 1 X_B->calc_mode 1 // Adding voltage independent concentration term float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCd14 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) // Equation is in different set of units... ca_conc = ca_conc * 0.000001 if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end // Converting back... ca_conc = ca_conc * 1000000 setfield KCd14 Z_A->table[{i}] {0} setfield KCd14 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCd14 Z addfield KCd14 addmsg1 setfield KCd14 addmsg1 "../Ca_d14 . CONCEN Ca" end //======================================================================== // Tabulated Ca-dependent K AHP Channel,gK(AHP) 2003/05 //======================================================================== /* This is a tabchannel which gets the calcium concentration from Ca_hip_conc in order to calculate the activation of its Z gate. It is set up much like the Ca channel, except that the A and B tables have values which are functions of concentration, instead of voltage. */ function make_KAHPs14 if ({exists KAHPs14}) return end create tabchannel KAHPs14 setfield KAHPs14 \ Ek -0.095 \ Ik 0 \ Zpower 1 setfield KAHPs14 \ Gbar 1 \ Gk 0 float tab_divs = 1041 // Channel is dependent on concentration of: Calcium, rate equations will involve variable: ca_conc float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPs14 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // Looking at rate: alpha float alpha float v v = v * 1000 // temporarily set v to units of equation... // Equation depends on concentration, so converting that too... ca_conc = ca_conc * 0.000001 if (ca_conc < 0.0001 ) alpha = ca_conc/0.01 else alpha = 0.01 end v = v * 0.001 // reset v ca_conc = ca_conc * 1000000 // resetting ca_conc // Set correct units of alpha alpha = alpha * 1000 // Looking at rate: beta float beta v = v * 1000 // temporarily set v to units of equation... // Equation depends on concentration, so converting that too... ca_conc = ca_conc * 0.000001 beta = 0.001 v = v * 0.001 // reset v ca_conc = ca_conc * 1000000 // resetting ca_conc // Set correct units of beta beta = beta * 1000 // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KAHPs14 Z_A->table[{c}] {alpha} setfield KAHPs14 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPs14 Z_conc 1 setfield KAHPs14 Z_A->calc_mode 1 Z_B->calc_mode 1 // Use an added field to tell the cell reader to set up the // CONCEN message from the Ca_concen element addfield KAHPs14 addmsg1 setfield KAHPs14 \ addmsg1 "../Ca_s14 . CONCEN Ca" end function make_KAHPd14 if ({exists KAHPd14}) return end create tabchannel KAHPd14 setfield KAHPd14 \ Ek -0.095 \ Ik 0 \ Zpower 1 setfield KAHPd14 \ Gbar 1 \ Gk 0 float tab_divs = 1041 // Channel is dependent on concentration of: Calcium, rate equations will involve variable: ca_conc float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPd14 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // Looking at rate: alpha float alpha float v v = v * 1000 // temporarily set v to units of equation... // Equation depends on concentration, so converting that too... ca_conc = ca_conc * 0.000001 if (ca_conc < 0.0001 ) alpha = ca_conc/0.01 else alpha = 0.01 end v = v * 0.001 // reset v ca_conc = ca_conc * 1000000 // resetting ca_conc // Set correct units of alpha alpha = alpha * 1000 // Looking at rate: beta float beta v = v * 1000 // temporarily set v to units of equation... // Equation depends on concentration, so converting that too... ca_conc = ca_conc * 0.000001 beta = 0.001 v = v * 0.001 // reset v ca_conc = ca_conc * 1000000 // resetting ca_conc // Set correct units of beta beta = beta * 1000 // Using the alpha and beta expressions to populate the tables float tau = 1/(alpha + beta) setfield KAHPd14 Z_A->table[{c}] {alpha} setfield KAHPd14 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPd14 Z_conc 1 setfield KAHPd14 Z_A->calc_mode 1 Z_B->calc_mode 1 // Use an added field to tell the cell reader to set up the // CONCEN message from the Ca_concen element addfield KAHPd14 addmsg1 setfield KAHPd14 \ addmsg1 "../Ca_d14 . CONCEN Ca" end