//genesis /* FILE INFORMATION ** The 1991 Traub set of voltage and concentration dependent channels ** Implemented as tabchannels by : Dave Beeman ** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson ** Journal of Neurophysiology, Vol. 66, p. 635 (1991) ** ** This file depends on functions and constants defined in defaults.g ** As it is also intended as an example of the use of the tabchannel ** object to implement concentration dependent channels, it has extensive ** comments. Note that the original units used in the paper have been ** converted to SI (MKS) units. Also, we define the ionic equilibrium ** potentials relative to the resting potential, EREST_ACT. In the ** paper, this was defined to be zero. Here, we use -0.060 volts, the ** measured value relative to the outside of the cell. */ /* November 1999 update for GENESIS 2.2: Previous versions of this file used a combination of a table, tabgate, and vdep_channel to implement the Ca-dependent K Channel - K(C). This new version uses the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. This allows these channels to be used with the fast hsolve chanmodes > 1. */ // Now updated for Traub et al. J Neurophysiol 2003;89:909-921. // And for LTS and FS interneurons - Cunningham et al. PNAS 2004;101:7152-7157. // CONSTANTS float EREST_ACT = -0.070 /* cell resting potential */ float ENATCR = 0.120 + EREST_ACT // 0.050 float EKTCR = -0.025 + EREST_ACT // -0.095 float ECATCR = 0.195 + EREST_ACT // 0.125 float EARTCR = 0.035 + EREST_ACT // -0.035 float SOMA_A = 3.320e-9 // soma area in square meters /* For these channels, the maximum channel conductance (Gbar) has been calculated using the CA3 soma channel conductance densities and soma area. Typically, the functions which create these channels will be used to create a library of prototype channels. When the cell reader creates copies of these channels in various compartments, it will set the actual value of Gbar by calculating it from the cell parameter file. */ //======================================================================== // Tabchannel gNa-transient, gNa(F) 2005/03 //======================================================================== function make_NaF20 if ({exists NaF20}) return end create tabchannel NaF20 setfield NaF20 \ Ek 0.05 \ Ik 0 \ Xpower 3 \ Ypower 1 setfield NaF20 \ Gbar 1875 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaF20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if ({ v - 5.5 } < -30 ) tau = 0.025 + 0.14 * { exp { {{v - 5.5} + 30} / 10} } else tau = 0.02 + {0.145} * { exp { -1 * {{v - 5.5} + 30} / 10} } end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp { { -1 * {v - 5.5} - 38} / 10}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF20 X_A->table[{i}] {alpha} setfield NaF20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF20 X_A->calc_mode 1 X_B->calc_mode 1 // Creating table for gate h, using name Y for it here float dv = ({v_max} - {v_min})/{tab_divs} call NaF20 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.15 + 1.15 / { 1 + { exp {{ v + 37 } / 15} } } v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp {{v + 55.9} / 10.7}} } v = v * 0.001 // reset v // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaF20 Y_A->table[{i}] {alpha} setfield NaF20 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaF20 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03 //======================================================================== function make_NaP20 if ({exists NaP20}) return end create tabchannel NaP20 setfield NaP20 \ Ek 0.05 \ Ik 0 \ Xpower 1 setfield NaP20 \ Gbar 1875 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call NaP20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if ({ v + 7 } < -30 ) tau = 0.025 + 0.14 * { exp { {{v + 7} + 30} / 10} } else tau = 0.02 + 0.145 * { exp { -1 * {{v + 7} + 30} / 10} } end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf v = v * 1000 // v to units of equation inf = 1 / { 1 + {exp { { -1 * {v + 7} - 38} / 10}} } v = v * 0.001 // reset v //alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield NaP20 X_A->table[{i}] {alpha} setfield NaP20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield NaP20 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel Anomalous Rectifier, gAR 2005/03 //======================================================================== function make_AR20 if ({exists AR20}) return end create tabchannel AR20 setfield AR20 \ Ek -0.035 \ Ik 0 \ Xpower 1 setfield AR20 \ Gbar 2.5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X gate m float dv = ({v_max} - {v_min})/{tab_divs} call AR20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 5.5, Vhalf = -75, in physiological units // A = 1, B = 0.0055, Vhalf = -0.075 inf = 1 / ( {exp {(v + 0.075) / 0.0055}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield AR20 X_A->table[{i}] {alpha} setfield AR20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield AR20 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-delayed rectifier, gK(DR) 2005/03 //======================================================================== function make_KDR20 if ({exists KDR20}) return end create tabchannel KDR20 setfield KDR20 \ Ek -0.095 \ Ik 0 \ Xpower 4 setfield KDR20 \ Gbar 1250 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KDR20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation if (v < -10 ) tau = 0.25 + 4.35 * {exp {{ v + 10 }/10}} else tau = 0.25 + 4.35 * {exp {{- v - 10}/ 10}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -10, Vhalf = -29.5, in physiological units // A = 1, B = -0.01, Vhalf = -0.0295 inf = 1 / ( {exp {(v + 0.0295) / -0.01}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KDR20 X_A->table[{i}] {alpha} setfield KDR20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KDR20 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gK-transient, gK(A) 2005/03 //======================================================================== function make_KA20 if ({exists KA20}) return end create tabchannel KA20 setfield KA20 \ Ek -0.095 \ Ik 0 \ Xpower 4 \ Ypower 1 setfield KA20 \ Gbar 300 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KA20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -8.5, Vhalf = -60, in physiol units // A = 1, B = -0.0085, Vhalf = -0.06 inf = 1 / ( {exp {(v + 0.06) / -0.0085}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA20 X_A->table[{i}] {alpha} setfield KA20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA20 X_A->calc_mode 1 X_B->calc_mode 1 // Creating table for gate h, using name Y for it here float dv = ({v_max} - {v_min})/{tab_divs} call KA20 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -63.0 ) tau = 0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}} else tau = 9.5 end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 6, Vhalf = -78, in physiol units // A = 1, B = 0.006, Vhalf = -0.078 inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield KA20 Y_A->table[{i}] {alpha} setfield KA20 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KA20 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK2-slow, gK2 2005/03 //======================================================================== function make_K220 if ({exists K220}) return end create tabchannel K220 setfield K220 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Ypower 1 setfield K220 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call K220 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation... tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -17, Vhalf = -10, in physiol units // A = 1, B = -0.017, Vhalf = -0.01 inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K220 X_A->table[{i}] {alpha} setfield K220 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K220 X_A->calc_mode 1 X_B->calc_mode 1 // Creating table for gate h, using name Y for it here float dv = ({v_max} - {v_min})/{tab_divs} call K220 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}} v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 10.6, Vhalf = -58, in physiol units // A = 1, B = 0.0106, Vhalf = -0.058 inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield K220 Y_A->table[{i}] {alpha} setfield K220 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield K220 Y_A->calc_mode 1 Y_B->calc_mode 1 end //======================================================================== // Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03 //======================================================================== function make_KM20 if ({exists KM20}) return end create tabchannel KM20 setfield KM20 \ Ek -0.095 \ Ik 0 \ Xpower 1 setfield KM20 \ Gbar 75 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KM20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha // A = 0.02, B = -5, Vhalf = -20, in physiol units // A = 20, B = -0.005, Vhalf = -0.02 alpha = 20 / ( {exp {(v + 0.02) / -0.005}} + 1) // beta float beta // A = 0.01, B = -18, Vhalf = -43, in physiol units // A = 10, B = -0.018, Vhalf = -0.043 beta = 10 * {exp {(v + 0.043) / -0.018}} // alpha and beta float tau = 1/(alpha + beta) setfield KM20 X_A->table[{i}] {alpha} setfield KM20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KM20 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03 //======================================================================== function make_CaL20 if ({exists CaL20}) return end create tabchannel CaL20 setfield CaL20 \ Ek 0.125 \ Ik 0 \ Xpower 2 \ Ypower 1 setfield CaL20 \ Gbar 1 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call CaL20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // v to units of equation tau = 0.204 + 0.333 / { {exp {{v + 15.8} / 18.2 }} + {exp {{- v - 131} / 16.7}} } v = v * 0.001 //reset v // Set correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = -6.2, Vhalf = -56.0, in physiol units // A = 1, B = -0.0062, Vhalf = -0.056 inf = 1 / ( {exp {(v + 0.056) / -0.0062}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL20 X_A->table[{i}] {alpha} setfield CaL20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL20 X_A->calc_mode 1 X_B->calc_mode 1 // Y table for gate h float dv = ({v_max} - {v_min})/{tab_divs} call CaL20 TABCREATE Y {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // tau float tau v = v * 1000 // temporarily set v to units of equation... if (v < -81.0 ) tau = 0.333 * {exp {{ v + 466 } / 66.6}} else tau = 9.32 + 0.333 * {exp {{ - v - 21 } / 10.5}} end v = v * 0.001 // reset v // correct units of tau tau = tau * 0.001 // inf float inf // A = 1, B = 4, Vhalf = -80, in physiological units // A = 1, B = 0.004, Vhalf = -0.08 inf = 1 / ( {exp {(v + 0.08) / 0.004}} + 1) // alpha and beta float alpha float beta alpha = inf / tau beta = (1- inf)/tau setfield CaL20 Y_A->table[{i}] {alpha} setfield CaL20 Y_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaL20 Y_A->calc_mode 1 Y_B->calc_mode 1 end //========================================================================== // Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05 //========================================================================== function make_CaH20 if ({exists CaH20}) return end create tabchannel CaH20 setfield CaH20 \ Ek 0.125 \ Ik 0 \ Xpower 2 setfield CaH20 \ Gbar 5 \ Gk 0 float tab_divs = 741 float v_min = -0.12 float v_max = 0.06 float v, dv, i // X table for gate me float dv = ({v_max} - {v_min})/{tab_divs} call CaH20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha // A = 1.6, B = -13.888889, Vhalf = 5 in physiological units // A = 1600, B = -0.013888889000000001, Vhalf = 0.005 alpha = 1600 / ( {exp {(v - 0.005) / -0.013888889000000001}} + 1) // beta float beta // A = 0.1, B = -5, Vhalf = -8.9, in physiol units // A = 100, B = -0.005, Vhalf = -0.0089 if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6) beta = 100 * (1 + (v + 0.0089)/-0.005/2) else beta = 100 * ((v + 0.0089) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}}) end // alpha and beta & tabels float tau = 1/(alpha + beta) setfield CaH20 X_A->table[{i}] {alpha} setfield CaH20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield CaH20 X_A->calc_mode 1 X_B->calc_mode 1 end //======================================================================== // Ca conc, Traub et al. J Neurophysiol 2003;89:909-921. //======================================================================== /**************************************************************************** Next, we need an element to take the Calcium current calculated by the Ca channel and convert it to the Ca concentration. The "Ca_concen" object solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As it is easy to make mistakes in units when using this Calcium diffusion equation, the units used here merit some discussion. With Ca_base = 0, this corresponds to Traub's diffusion equation for concentration, except that the sign of the current term here is positive, as GENESIS uses the convention that I_Ca is the current flowing INTO the compartment through the channel. In SI units, the concentration is usually expressed in moles/m^3 (which equals millimoles/liter), and the units of B are chosen so that B = 1/(ion_charge * Faraday * volume). Current is expressed in amperes and one Faraday = 96487 coulombs. However, in this case, Traub expresses the concentration in arbitrary units, current in microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the 2003 J Neurophys paper). If we use the same concentration units, but express current in amperes and tau in seconds, our B constant is then 10^12 times the constant (called "phi") used in the paper. The actual value used will typically be determined by the cell reader from the cell parameter file (will vary inversely with surface area of compartment). However, for the prototype channel we wlll use Traub's corrected value for the soma. (An error in the paper gives it as 17,402 rather than 17.402.) In our units, this will be 17.402e12. ****************************************************************************/ function make_Ca_s20 if ({exists Ca_s20}) return end create Ca_concen Ca_s20 setfield Ca_s20 \ tau { 1.0 / 20 } \ Ca_base 0 addfield Ca_s20 addmsg1 setfield Ca_s20 \ addmsg1 "../CaH20 . I_Ca Ik" // addfield Ca_s20 addmsg2 // setfield Ca_s20 \ // addmsg2 "../CaL20 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ /****************************************************************************/ function make_Ca_d20 if ({exists Ca_d20}) return end create Ca_concen Ca_d20 setfield Ca_d20 \ tau { 1.0 / 50 } \ Ca_base 0 addfield Ca_d20 addmsg1 setfield Ca_d20 \ addmsg1 "../CaH20 . I_Ca Ik" // addfield Ca_d20 addmsg2 // setfield Ca_d20 \ // addmsg2 "../CaL20 . I_Ca Ik" end /* This Ca_concen element should receive an "I_Ca" message from the calcium channel, accompanied by the value of the calcium channel current. As we will ordinarily use the cell reader to create copies of these prototype elements in one or more compartments, we need some way to be sure that the needed messages are established. Although the cell reader has enough information to create the messages which link compartments to their channels and to other adjacent compartments, it must be provided with the information needed to establish additional messages. This is done by placing the message string in a user-defined field of one of the elements which is involved in the message. The cell reader recognizes the added field names "addmsg1", "addmsg2", etc. as indicating that they are to be evaluated and used to set up messages. The paths are relative to the element which contains the message string in its added field. Thus, "../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "." refers to the Ca_hip_conc element itself. */ //=============================================================================== // Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)2005/03 //=============================================================================== /* The expression for the conductance of the potassium C-current channel has a typical voltage and time dependent activation gate, where the time dependence arises from the solution of a differential equation containing the rate parameters alpha and beta. It is multiplied by a function of calcium concentration that is given explicitly rather than being obtained from a differential equation. Therefore, we need a way to multiply the activation by a concentration dependent value which is determined from a lookup table. This is accomplished by using the Z gate with the new tabchannel "instant" field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for the multiplicative Ca-dependent factor in the conductance. */ function make_KCs20 if ({exists KCs20}) return end create tabchannel KCs20 setfield KCs20 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCs20 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KCs20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha v = v * 1000 // v to units of equation if (v < -10 ) alpha = {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // correct units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // v to units of equation alpha = alpha * 0.001 // alpha to units of equation if (v < -10 ) beta = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KCs20 X_A->table[{i}] {alpha} setfield KCs20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCs20 X_A->calc_mode 1 X_B->calc_mode 1 // voltage indep. concentration var float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCs20 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end ca_conc = ca_conc * 1000000 // reset ca_conc setfield KCs20 Z_A->table[{i}] {0} setfield KCs20 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCs20 Z addfield KCs20 addmsg1 setfield KCs20 addmsg1 "../Ca_s20 . CONCEN Ca" end function make_KCd20 if ({exists KCd20}) return end create tabchannel KCd20 setfield KCd20 \ Ek -0.095 \ Ik 0 \ Xpower 1 \ Zpower 1 setfield KCd20 \ Gbar 120 \ Gk 0 float tab_divs = 1041 float v_min = -0.12 float v_max = 0.14 float v, dv, i // X table for gate m float dv = ({v_max} - {v_min})/{tab_divs} call KCd20 TABCREATE X {tab_divs} {v_min} {v_max} v = {v_min} for (i = 0; i <= ({tab_divs}); i = i + 1) // alpha float alpha v = v * 1000 // v to units of equation if (v < -10 ) alpha = {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } } else alpha = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} end v = v * 0.001 // reset v // correct units of alpha alpha = alpha * 1000 // beta float beta v = v * 1000 // v to units of equation alpha = alpha * 0.001 // alpha to units of equation if (v < -10 ) beta = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha else beta = 0.0 end v = v * 0.001 // reset v alpha = alpha * 1000 // resetting alpha // correct units of beta beta = beta * 1000 // alpha and beta float tau = 1/(alpha + beta) setfield KCd20 X_A->table[{i}] {alpha} setfield KCd20 X_B->table[{i}] {alpha + beta} v = v + dv end // end of for (i = 0; i <= ({tab_divs}); i = i + 1) setfield KCd20 X_A->calc_mode 1 X_B->calc_mode 1 // voltage indep. concentration var float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KCd20 TABCREATE Z {tab_divs} {conc_min} {conc_max} float const_state for (i = 0; i <= ({tab_divs}); i = i + 1) ca_conc = ca_conc * 0.000001 // ca_conc to units of equation if (ca_conc < 0.00025 ) const_state = {ca_conc / 0.00025} else const_state = 1 end ca_conc = ca_conc * 1000000 // reset ca_conc setfield KCd20 Z_A->table[{i}] {0} setfield KCd20 Z_B->table[{i}] {const_state} ca_conc= ca_conc + dc end tweaktau KCd20 Z addfield KCd20 addmsg1 setfield KCd20 addmsg1 "../Ca_d20 . CONCEN Ca" end //======================================================================== // Tabulated Ca-dependent K AHP Channel,gK(AHP) 2003/05 //======================================================================== /* This is a tabchannel which gets the calcium concentration from Ca_hip_conc in order to calculate the activation of its Z gate. It is set up much like the Ca channel, except that the A and B tables have values which are functions of concentration, instead of voltage. */ function make_KAHPs20 if ({exists KAHPs20}) return end create tabchannel KAHPs20 setfield KAHPs20 \ Ek -0.095 \ Ik 0 \ Zpower 1 setfield KAHPs20 \ Gbar 1 \ Gk 0 float tab_divs = 1041 float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPs20 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // alpha float alpha // ca_conc converton to units of equ. ca_conc = ca_conc * 0.000001 if (ca_conc < 0.0005 ) alpha = ca_conc/0.05 else alpha = 0.01 end ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of alpha alpha = alpha * 1000 // beta float beta beta = 0.001 // Set correct units of beta beta = beta * 1000 //alpha and beta float tau = 1/(alpha + beta) setfield KAHPs20 Z_A->table[{c}] {alpha} setfield KAHPs20 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPs20 Z_conc 1 setfield KAHPs20 Z_A->calc_mode 1 Z_B->calc_mode 1 addfield KAHPs20 addmsg1 setfield KAHPs20 \ addmsg1 "../Ca_s20 . CONCEN Ca" end function make_KAHPd20 if ({exists KAHPd20}) return end create tabchannel KAHPd20 setfield KAHPd20 \ Ek -0.095 \ Ik 0 \ Zpower 1 setfield KAHPd20 \ Gbar 1 \ Gk 0 float tab_divs = 1041 float c float conc_min = 0 float conc_max = 1000 float dc = ({conc_max} - {conc_min})/{tab_divs} float ca_conc = {conc_min} call KAHPd20 TABCREATE Z {tab_divs} {conc_min} {conc_max} for (c = 0; c <= ({tab_divs}); c = c + 1) // alpha float alpha // ca_conc converton to units of equ. ca_conc = ca_conc * 0.000001 if (ca_conc < 0.0005 ) alpha = ca_conc/0.05 else alpha = 0.01 end ca_conc = ca_conc * 1000000 // resetting ca_conc // correct units of alpha alpha = alpha * 1000 // beta float beta beta = 0.001 // Set correct units of beta beta = beta * 1000 //alpha and beta float tau = 1/(alpha + beta) setfield KAHPd20 Z_A->table[{c}] {alpha} setfield KAHPd20 Z_B->table[{c}] {alpha + beta} ca_conc = ca_conc + dc end // end of for (c = 0; c <= ({tab_divs}); c = c + 1) setfield KAHPd20 Z_conc 1 setfield KAHPd20 Z_A->calc_mode 1 Z_B->calc_mode 1 addfield KAHPd20 addmsg1 setfield KAHPd20 \ addmsg1 "../Ca_d20 . CONCEN Ca" end