: Ca-dependent K channels (BK and SK)
NEURON {
SUFFIX CadepK
USEION ca READ ica
USEION k READ ek WRITE ik
RANGE gbkbar, gskbar, caim
GLOBAL ca0, tau, stau
}
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(mV) = (millivolt)
(mA) = (milliamp)
(S) = (siemens)
B = .26 (mM-cm2/mA-ms)
}
PARAMETER {
gbkbar = .01 (S/cm2) : maximum permeability
gskbar = .01 (S/cm2) : maximum permeability
ca0 = .00007 (mM)
tau = 9 (ms)
alphar = 7.5 (/ms)
stau = 10 (ms)
}
ASSIGNED {
v (mV)
ek (mV)
ik (mA/cm2)
ica (mA/cm2)
area (microm2)
gbk (S/cm2)
gsk (S/cm2)
caim (mM)
}
STATE { ca_i (mM) q r s }
BREAKPOINT {
SOLVE state METHOD cnexp
gbk = gbkbar*r*s*s
gsk = gskbar*q*q
ik = (gbk+gsk)*(v - ek)
caim = ca_i
}
DERIVATIVE state { : exact when v held constant; integrates over dt step
ca_i' = -B*ica-(ca_i-ca0)/tau
q' = alphaq(ca_i)*(1-q)-betaq(ca_i)*q
r' = alphar*(1-r)-betar(v)*r
s' = (sinf(ca_i)-s)/stau
}
INITIAL {
ca_i = ca0
q = alphaq(ca_i)/(alphaq(ca_i)+betaq(ca_i))
r = alphar/(alphar+betar(v))
s = sinf(ca_i)
}
FUNCTION exp1(A (/ms), d, k, x (mM)) (/ms) {
UNITSOFF
exp1 = A/exp((12*log10(x)+d)/k)
UNITSON
}
FUNCTION alphaq(x (mM)) (/ms) {
alphaq = exp1(0.00246,28.48,-4.5,x)
}
FUNCTION betaq(x (mM)) (/ms) {
betaq = exp1(0.006,60.4,35,x)
}
FUNCTION betar(v (mV)) (/ms) {
UNITSOFF
betar = 0.11/exp((v-35)/14.9)
UNITSON
}
FUNCTION sinf(x (mM)) {
UNITSOFF
sinf = 1/(1+4/(1000*x))
UNITSON
}